当前位置: 首页 > news >正文

图像处理与视觉感知---期末复习重点(1)

文章目录

  • 一、概述
  • 二、图像处理基础
    • 2.1 视觉感知要素
    • 2.2 像素间的一些基本关系
      • 2.2.1 相邻像素
      • 2.2.2 连通性
      • 2.2.3 距离度量
    • 2.3 基本坐标变换
    • 2.4 空间变换与灰度值


一、概述

 1. 图像的概念及分类。
 图像是用各种观测系统以不同形式和手段观测客观世界而获得的、可以直接或间接作用于人的视觉系统而产生的视知觉实体。
 图像分为模拟图像和数字图像:(1) 模拟图像:二维空间和亮度都是连续值的图像。亮度值连续且不分等级。 (2) 数字图像:二维空间和亮度都是用有限数字数值表示的图像。

 2. 像素表示的矩阵、矢量形式。
 一幅图像可分解为许多个单元。每个基本单元叫做图像元素,简称像素。

在这里插入图片描述

 3. 图像工程的三个层次。

在这里插入图片描述

二、图像处理基础

2.1 视觉感知要素

 1. 亮度适应与辨别:
 (1) 主观亮度:即人眼感知到的亮度,是进入人眼的光强的对数函数。
 (2) 亮度适应现象:感知亮度不是亮度的简单函数。① 马赫带:视觉系统往往会在不同强度区域的边界处出现“ 下冲”或“上冲”现象(毛边)。② 同时对比:感知区域的亮度与背景亮度相关。

 2. 当在白天进入一个黑暗剧场时,在能看清并找到空座位时需要适应一段时间,试述发 生这种现象的视觉原理?
 答:人的视觉绝对不能同时在整个亮度适应范围工作,它是利用改变其亮度适应级来完成亮度适应的,即所谓的亮度适应范围。同整个亮度适应范围相比,能同时鉴别的光强度级的总范围很小。因此,白天进入黑暗剧场时,人的视觉系统需要改变亮度适应级,因此,需要适应一段时间,亮度适应级才能被改变。

2.2 像素间的一些基本关系

2.2.1 相邻像素

 1. 相邻像素:4邻域、D邻域、8邻域。

 2. 4邻域:像素 p ( x , y ) p(x,y) p(x,y) 的4邻域是 (x+1,y);(x-1,y);(x,y+1);(x,y-1)。用 N 4 ( p ) N_4(p) N4(p) 表示像素 p p p 的4邻域。

在这里插入图片描述

 3. D邻域:像素 p ( x , y ) p (x,y) p(x,y) 的D邻域是对角上的点 (x+1,y+1);(x+1,y-1);(x-1,y+1);(x-1,y-1)。用 N D ( p ) N_D(p) ND(p) 表示像素 p p p 的D邻域。

在这里插入图片描述

 4. 8邻域:像素 p ( x , y ) p(x,y) p(x,y) 的8邻域是4邻域的点+D邻域的点。用 N 8 ( p ) N_8(p) N8(p) 表示像素 p p p 的8邻域,即 N 8 ( p ) = N 4 ( p ) + N D ( p ) N_8(p)=N_4(p)+N_D(p) N8(p)=N4(p)+ND(p)

在这里插入图片描述

2.2.2 连通性

 1. 两个像素连通的两个必要条件是:两个像素的位置是否相邻;两个像素的灰度值是否满足特定的相 似性准则(或者是否相等)。

 2. 4连通:对于具有值 V V V 的像素 p p p q q q,如果 q q q 在集合 N 4 ( p ) N_4(p) N4(p) 中, 则称这两个像素是4连通的。

在这里插入图片描述

 3. 8连通:对于具有值 V V V 的像素 p p p q q q,如果 q q q 在集合 N 8 ( p ) N_8(p) N8(p) 中, 则称这两个像素是8连通的。

在这里插入图片描述

 4. 对于具有值 V V V 的像素 p p p q q q,如果: q q q 在集合 N 4 ( p ) N_4(p) N4(p) 中;或 q q q 在集合 N D ( p ) N_D(p) ND(p) 中,并且 N 4 ( p ) N_4(p) N4(p) N 4 ( q ) N_4(q) N4(q) 的交集为空(没有值V的像素)则称这两个像素是m连通的。

在这里插入图片描述

 5. 通路的定义:一条从具有坐标 ( x , y ) (x,y) (x,y) 的像素 p p p,到具有坐标 ( s , t ) (s,t) (s,t) 的像素 q q q 的通路,是具有坐标 ( x 0 , y 0 ) , ( x 1 , y 1 ) , . . . , ( x n , y n ) (x_0,y_0),(x_1,y_1),...,(x_n,y_n) (x0,y0)(x1,y1)...(xn,yn) 的不同像素的序列。其中, ( x 0 , y 0 ) = ( x , y ) (x_0,y_0)=(x,y) (x0,y0)=(x,y) ( x n , y n ) = ( s , t ) (x_n,y_n)=(s,t) (xn,yn)=(s,t) ( x i , y i ) (x_i,y_i) (xi,yi) ( x i − 1 , y i − 1 ) (x_{i-1},y_{i-1}) (xi1,yi1) 是邻接的, 1 ≤ i ≤ n 1 ≤ i ≤ n 1in n n n 是路径的长度。如果 ( x 0 , y 0 ) = ( x n , y n ) (x_0,y_0)=(x_n,y_n) (x0,y0)=(xn,yn),则该通路是闭合通路。

在这里插入图片描述

2.2.3 距离度量

 1. 基本定义如下:

在这里插入图片描述

在这里插入图片描述

 2. 一道例题如下,通过上面的公式可以解决下面题目中的距离问题。

在这里插入图片描述

在这里插入图片描述

2.3 基本坐标变换

 1. 坐标变换可借助矩阵写为: v ′ = T v v' =Tv v=Tv

在这里插入图片描述

 2. 例子:先放大2倍,然后旋转45度,然后再缩小0.5倍。

在这里插入图片描述

 3. 平移变换并不是矩阵乘法的形式,而是矩阵加法的形式。

在这里插入图片描述

 4. 改变图像的像素值,我们称为滤波(Filtering)。改变图像的像素位置,我们称为扭曲(Warping)。

在这里插入图片描述

 5. 转置变换:图像转置是指将图像像素的x坐标和y坐标互换。图像的大小会随之改变,高度和宽度将互换。

在这里插入图片描述

 6. 尺度变换(放缩变换):

在这里插入图片描述

 7. 旋转变换矩阵:

在这里插入图片描述

2.4 空间变换与灰度值

 1. 几何变换可在一幅图像中的像素间修改空间联系。几何变换通常又叫做橡皮片变换,因为它们可以被看做在一片橡皮片上打印图像,然后根据预先确定的规则拉伸这个橡皮片的过程。

 2. 在数字图像处理中,几何变换由两个基本操作组成:空间变换,它定义了图像平面上像素的重新安排;灰度级插补,处理空间变换后图像中像素灰度级的赋值。

 3. 空间变换:图显示了在失真和相应的校正图像中的四边形区域,四边的顶点是相应的 “连接点”。

 4. 灰度级插补:图像经几何位置校正后,在校正空间中各像点的灰度值等于被校正图像对应点的灰度值。一般校正后的图像某些像素点可能挤压在一起,或者分散开,不会恰好落在坐标点上,因此常采用内插法来求得这些像素点的灰度值。
 常用的有:最邻近插值法、双线性插值法(一阶插值)、高阶插值法。

 5. 最近邻插值法:计算与点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0y0) 临近的四个点,将与点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0y0) 最近的整数坐标点 ( x , y ) (x,y) (xy) 的灰度值取为 P ( x 0 , y 0 ) P(x_0,y_0) P(x0y0) 点灰度近似值。

在这里插入图片描述

 6. 线性插值法:

在这里插入图片描述

 7. 三阶插值:是指用 ( x , y ) (x ,y) (x,y) 周围的16个网格点灰度按三次多项式进行内插的高精度算法。

在这里插入图片描述

 8. 常用的灰度插值有几种,概括它们的优缺点:

  • 最邻近插值法, 这种方法简单但效果不太好。
  • 双线性插值(一阶插值):计算量大,但缩放后图像质量高,不会出现图像不连续的情况。
  • 高阶插值:计算量最大,插值后图像的视觉质量最好。

相关文章:

  • 如何在Spring Boot框架中打印响应的日志?
  • 【Mining Data】收集数据(使用 Python 挖掘 Twitter 数据)
  • js如何渲染页面
  • [渗透教程]-024-Hashcat密码破解
  • LLM(十一)| Claude 3:Anthropic发布最新超越GPT-4大模型
  • Python 开发图形界面程序
  • 二十五、剖析HashMap
  • 《javascript高级程序设计》学习笔记 | 23.JSON
  • 2024年JSON 面试题目-1
  • LeetCode刷题---填充每个节点的下一个右侧节点指针
  • Linux设置静态IP地址
  • 10个常见的Java面试问题及其答案
  • 口碑营销:品牌如何维护良好口碑?
  • 就业班 2401--3.6 Linux Day12--计划任务和邮件和ssh远程连接
  • 【Redis】Redis持久化模式AOF
  • 【5+】跨webview多页面 触发事件(二)
  • 【RocksDB】TransactionDB源码分析
  • Android路由框架AnnoRouter:使用Java接口来定义路由跳转
  • flutter的key在widget list的作用以及必要性
  • Iterator 和 for...of 循环
  • Java新版本的开发已正式进入轨道,版本号18.3
  • Java应用性能调优
  • Python3爬取英雄联盟英雄皮肤大图
  • Spark学习笔记之相关记录
  • XML已死 ?
  • 第2章 网络文档
  • 反思总结然后整装待发
  • 官方新出的 Kotlin 扩展库 KTX,到底帮你干了什么?
  • 将 Measurements 和 Units 应用到物理学
  • 讲清楚之javascript作用域
  • 前端_面试
  • 前端技术周刊 2019-01-14:客户端存储
  • 前端路由实现-history
  • 时间复杂度与空间复杂度分析
  • 双管齐下,VMware的容器新战略
  • 责任链模式的两种实现
  • 你学不懂C语言,是因为不懂编写C程序的7个步骤 ...
  • ​二进制运算符:(与运算)、|(或运算)、~(取反运算)、^(异或运算)、位移运算符​
  • # MySQL server 层和存储引擎层是怎么交互数据的?
  • #NOIP 2014#day.2 T1 无限网络发射器选址
  • #免费 苹果M系芯片Macbook电脑MacOS使用Bash脚本写入(读写)NTFS硬盘教程
  • #我与Java虚拟机的故事#连载09:面试大厂逃不过的JVM
  • #我与Java虚拟机的故事#连载19:等我技术变强了,我会去看你的 ​
  • (06)金属布线——为半导体注入生命的连接
  • (2)STM32单片机上位机
  • (delphi11最新学习资料) Object Pascal 学习笔记---第2章第五节(日期和时间)
  • (NO.00004)iOS实现打砖块游戏(十二):伸缩自如,我是如意金箍棒(上)!
  • (Redis使用系列) Springboot 实现Redis 同数据源动态切换db 八
  • (二)Linux——Linux常用指令
  • (考研湖科大教书匠计算机网络)第一章概述-第五节1:计算机网络体系结构之分层思想和举例
  • (免费领源码)python#django#mysql公交线路查询系统85021- 计算机毕业设计项目选题推荐
  • (强烈推荐)移动端音视频从零到上手(上)
  • (一)基于IDEA的JAVA基础10
  • (原)Matlab的svmtrain和svmclassify
  • (转)人的集合论——移山之道