当前位置: 首页 > news >正文

用A*算法求解八数码问题

用A*算法求解八数码问题

  • 实现两种启发函数
  • 实现A*算法
  • 测试

实现两种启发函数

采取两种策略实现启发函数:

  • 策略1:不在目标位置的数字个数
  • 策略2:曼哈顿距离(将数字直接移动到对应位置的步数总数)
# 策略1: 不在目标位置的数字个数,即 state 与 goal_state 不相同的数字个数
def h1(state, goal_state):'''state, goal_state - 3x3 list'''distance = 0for i in range(3):for j in range(3):if state[i][j] != goal_state[i][j] and state[i][j] != 0:distance += 1return distance# 功能性函数,用于查找给定数字 num 在 goal_state 中的坐标
def find_num(num, goal_state):for i in range(3):for j in range(3):if goal_state[i][j] == num:return i, jreturn -1, -1# 策略2: 曼哈顿距离之和
def h2(state, goal_state):'''state, goal_state - 3x3 list'''distance = 0for i in range(3):for j in range(3):if state[i][j] == 0:continueif state[i][j] == goal_state[i][j]:continuegoal_i, goal_j = find_num(state[i][j], goal_state)distance += abs(i - goal_i) + abs(j - goal_j)return distance# 测试
start_state = [[2, 8, 3],[1, 6, 4],[7, 0, 5]
]goal_state = [[1, 2, 3],[8, 0, 4],[7, 6, 5]
]# 不在目标位置的数字:1、2、8、6,共 4 个
# 1 需移动 1 步到达正确位置
# 2 需移动 1 步到达正确位置
# 8 需移动 2 步到达正确位置
# 6 需移动 1 步到达正确位置
# 曼哈顿距离共 5 步print(h1(start_state, goal_state))  # 4
print(h2(start_state, goal_state))  # 5

实现A*算法

为了便于替换启发函数,将其作为参数传入函数:

# 定义A*算法函数
def astar(start_state, goal_state, h):'''params:start_state - 3x3 list 初始状态goal_state  - 3x3 list 目标状态h           - function 启发函数returns:expanded_nodes - 扩展节点数run_time       - 算法运行时间path           - 算法运行路径ps. 当路径不存在时,会返回 run_time = 0, path = None'''start_time = time.time()  # 算法开始open_list = [(h(start_state, goal_state), start_state)]  # 存储待扩展的节点的优先队列closed_set = set()  # 存储已经扩展过的节点的集合came_from = {}      # 记录节点之间的关系,即每个节点的父节点是哪个节点expanded_nodes = 0  # 记录扩展节点的数量while open_list:  # 带扩展节点队列不为空_, current_state = heapq.heappop(open_list)  # 弹出优先级最高的节点expanded_nodes += 1if current_state == goal_state:  # 找到目标状态# 回溯路径path = [current_state]while tuple(map(tuple, current_state)) in came_from:current_state = came_from[tuple(map(tuple, current_state))]path.append(current_state)end_time = time.time()  # 记录算法结束时间return expanded_nodes, end_time-start_time, path[::-1]closed_set.add(tuple(map(tuple, current_state)))  # 将当前节点状态加入已扩展节点集合zero_i, zero_j = find_num(0, current_state)  # 找到当前的空格坐标moves = [(0, 1), (0, -1), (1, 0), (-1, 0)]  # 四周的格子for di, dj in moves:new_i, new_j = zero_i + di, zero_j + dj  # 移动的数字if 0 <= new_i < 3 and 0 <= new_j < 3:  # 确保新位置在范围内new_state = [row[:] for row in current_state]  # 拷贝 current_statenew_state[zero_i][zero_j], new_state[new_i][new_j] = current_state[new_i][new_j], current_state[zero_i][zero_j]  # 移动空白格if tuple(map(tuple, new_state)) in closed_set:continue  # 如果新状态已经扩展过,则跳过new_cost = len(came_from) + 1 + h(new_state, goal_state)  # 计算新状态的代价heapq.heappush(open_list, (new_cost, new_state))  # 将新状态加入优先队列came_from[tuple(map(tuple, new_state))] = tuple(map(tuple, current_state))  # 更新新状态的父节点信息# 无可行解return expanded_nodes, 0, None

测试

首先,定义一个函数 print_path() 用于查看路径:

def print_path(path):step = 0for state in path:print("Step. ", step)for row in state:print(row)step += 1

设置初始状态和目标状态进行测试:

# 设置初始状态和目标状态
start_state = [[2, 8, 3],[1, 6, 4],[7, 0, 5]
]goal_state = [[1, 2, 3],[8, 0, 4],[7, 6, 5]
]h1_nodes, h1_times, h1_path = astar(start_state, goal_state, h1)  # 通过 h1 启发函数调用 astar 算法
h2_nodes, h2_times, h2_path = astar(start_state, goal_state, h2)  # 通过 h2 启发函数调用 astar 算法if h1_path:print("调用 h1 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h1_nodes, h1_times))# print_path(h1_path)
else:print("调用 h1 启发函数的 A* 算法无法得到可行解。")# print("=" * 50)
if h2_path:print("调用 h2 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h2_nodes, h2_times))# print_path(h2_path)
else:print("调用 h2 启发函数的 A* 算法无法得到可行解。")

输出结果:(path 输出过长,这里省略)

调用 h1 启发函数的 A* 算法共扩展 28 个节点,耗时 0.00037217140197753906s,路径如下:
调用 h2 启发函数的 A* 算法共扩展 17 个节点,耗时 0.0002200603485107422s,路径如下:

测试鲁棒性——当可行解不存在时:

# 设置初始状态和目标状态
start_state = [[7, 8, 3],[1, 5, 2],[6, 0, 4]
]goal_state = [[1, 2, 3],[4, 5, 6],[7, 8, 9]
]h1_nodes, h1_times, h1_path = astar(start_state, goal_state, h1)  # 通过 h1 启发函数调用 astar 算法
h2_nodes, h2_times, h2_path = astar(start_state, goal_state, h2)  # 通过 h2 启发函数调用 astar 算法if h1_path:print("调用 h1 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h1_nodes, h1_times))# print_path(h1_path)
else:print("调用 h1 启发函数的 A* 算法无法得到可行解。")# print("=" * 50)
if h2_path:print("调用 h2 启发函数的 A* 算法共扩展 {} 个节点,耗时 {}s,路径如下:".format(h2_nodes, h2_times))# print_path(h2_path)
else:print("调用 h2 启发函数的 A* 算法无法得到可行解。")

输出结果:(path 输出过长,这里省略)

调用 h1 启发函数的 A* 算法无法得到可行解。
调用 h2 启发函数的 A* 算法无法得到可行解。

国科大的朋友们提交之前改一改哈!因为作者也是这么交的~

相关文章:

  • 【C++】STL(二) string容器
  • SpringBoot中定时任务、corn表达式
  • Oracle 的同义词(Synonym) 作用
  • 加速你的应用:探索Redis的极致性能与多样化应用
  • 客户案例|100M 768 维向量数据,Zilliz Cloud 稳定支持 Shulex VOC 业
  • Java基于SpringBoot+Vue的人事管理系统,附源码
  • 洛谷 P1036 [NOIP2002 普及组] 选数
  • WPF实现一个表格数据从cs获取动态渲染
  • linux使用LVM管理磁盘,并扩容“磁盘“
  • Windows安装Go语言及VScode配置
  • oracle触发器
  • 算法-贪心-112. 雷达设备
  • LeetCode 0299.猜数字游戏:计数
  • 如何正确选择国外服务器的带宽和线路呢?
  • Docker 配置阿里云镜像加速器
  • 2018以太坊智能合约编程语言solidity的最佳IDEs
  • 30天自制操作系统-2
  • axios 和 cookie 的那些事
  • codis proxy处理流程
  • css属性的继承、初识值、计算值、当前值、应用值
  • E-HPC支持多队列管理和自动伸缩
  • EOS是什么
  • iBatis和MyBatis在使用ResultMap对应关系时的区别
  • Linux Process Manage
  • Node.js 新计划:使用 V8 snapshot 将启动速度提升 8 倍
  • RedisSerializer之JdkSerializationRedisSerializer分析
  • TypeScript实现数据结构(一)栈,队列,链表
  • vue.js框架原理浅析
  • webpack入门学习手记(二)
  • 案例分享〡三拾众筹持续交付开发流程支撑创新业务
  • 给第三方使用接口的 URL 签名实现
  • 两列自适应布局方案整理
  • 日剧·日综资源集合(建议收藏)
  • 掌握面试——弹出框的实现(一道题中包含布局/js设计模式)
  • nb
  • No resource identifier found for attribute,RxJava之zip操作符
  • [Shell 脚本] 备份网站文件至OSS服务(纯shell脚本无sdk) ...
  • # 学号 2017-2018-20172309 《程序设计与数据结构》实验三报告
  • #单片机(TB6600驱动42步进电机)
  • #图像处理
  • (10)工业界推荐系统-小红书推荐场景及内部实践【排序模型的特征】
  • (C)一些题4
  • (c语言)strcpy函数用法
  • (HAL库版)freeRTOS移植STMF103
  • (Java数据结构)ArrayList
  • (编译到47%失败)to be deleted
  • (入门自用)--C++--抽象类--多态原理--虚表--1020
  • (转)http协议
  • (转)Oracle存储过程编写经验和优化措施
  • (转)创业家杂志:UCWEB天使第一步
  • ***监测系统的构建(chkrootkit )
  • .bat批处理(一):@echo off
  • .net core 源码_ASP.NET Core之Identity源码学习
  • .net 设置默认首页
  • .NET/C# 使用 #if 和 Conditional 特性来按条件编译代码的不同原理和适用场景