当前位置: 首页 > news >正文

【刷力扣】23. 合并 K 个升序链表(dummy节点技巧 + 分治思维 + 优先队列)

目录

  • 一、合并升序链表问题
  • 二、题目:[21. 合并两个有序链表](https://leetcode.cn/problems/merge-two-sorted-lists/description/)
    • 1、掌握dummy节点的技巧
  • 三、题目:[23. 合并 K 个升序链表](https://leetcode.cn/problems/merge-k-sorted-lists/description/)
    • 1、分治思维
      • 1.1 插曲
      • 1.2 [代码](https://leetcode.cn/problems/merge-k-sorted-lists/solutions/2811116/jiang-kge-sheng-xu-lian-biao-zhuan-cheng-yffa/)
      • 1.3 分析这种解法的时空复杂度
        • 1.3.1 时间复杂度
        • 1.3.2 空间复杂度
    • 2、优先队列
      • 2.1 PriorityQueue的使用
      • 2.2 本题代码
        • 2.2.1 进一步优化
      • 2.3 分析这种解法的时空复杂度
        • 2.3.1 时间复杂度
        • 2.3.2 空间复杂度

一、合并升序链表问题

  • 合并升序链表问题是链表专题的经典问题。
    • 我们需要掌握:dummy节点的技巧
  • 23. 合并 K 个升序链表在21. 合并两个有序链表基础上,还需要掌握如下技能:
    • (1)分治思维。我们将合并K个升序链表转化为多次合并2个升序链表。归并排序也用到了分治思维。
    • (2)优先队列(小根堆/大根堆)。维护一个序列的最小/大值。

二、题目:21. 合并两个有序链表

1、掌握dummy节点的技巧

  • 在创建新链表时,定义一个dummy节点,在如下代码中,res便是dummy节点,因此,最后答案是:return res.next;
/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeTwoLists(ListNode list1, ListNode list2) {if (list1 == null) {return list2;}if (list2 == null) {return list1;}ListNode p1 = list1, p2 = list2, res = new ListNode(), p = res;while (p1 != null && p2 != null) {if (p1.val <= p2.val) {p.next = p1;p1 = p1.next;} else {p.next = p2;p2 = p2.next;}p = p.next;}if (p1 == null) {p.next = p2;}if (p2 == null) {p.next = p1;}return res.next;}
}

三、题目:23. 合并 K 个升序链表

1、分治思维

1.1 插曲

  • 看到这道题,首先想到的是合并2个升序链表。p1指向链表list1,p2指向链表list2。关键步骤是:
if (p1.val <= p2.val) {...
} else {...
}
  • 很显然,k个升序链表需要想其他办法去求最小值对应的节点。好久没刷算法了。不记得咋求了…(忘记优先队列了,要补上这个技术点)
  • 但想到了归并排序。所以,可以将k个升序链表转成2个升序链表的问题。

1.2 代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) return null;return merge(lists, 0, lists.length - 1);}private ListNode merge(ListNode[] lists, int i, int j) {if (i == j) {return lists[i];}if (j - i == 1) {// 两条链表的合并return merge2Lists(lists[i], lists[j]);}int mid = ((j - i) >> 1) + i;ListNode leftList = merge(lists, i, mid);ListNode rightList = merge(lists, mid + 1, j);// 两条链表的合并return merge2Lists(leftList, rightList);}private ListNode merge2Lists(ListNode l1, ListNode l2) {ListNode dummy = new ListNode(), p = dummy;while (l1 != null && l2 != null) {if (l1.val <= l2.val) {p.next = l1;l1 = l1.next;} else {p.next = l2;l2 = l2.next;}p = p.next;}if (l1 == null) {p.next = l2;}if (l2 == null) {p.next = l1;}return dummy.next;}
}

1.3 分析这种解法的时空复杂度

1.3.1 时间复杂度
  • 图示:4个链表,两两合并的过程。为便于分析,假设每个链表的节点树为a。
    在这里插入图片描述
  • i = 1:有 k 2 \tfrac{k}{2} 2k对合并,每对合并涉及2a个节点。
  • i = 2:有 k 4 \tfrac{k}{4} 4k对合并,每对合并涉及4a个节点。
  • 每一层的计算: k 2 i \tfrac{k}{2 ^ i} 2ik * 2 i ∗ a 2^i *a 2ia = k ∗ a k * a ka
  • 层数为树高:叶子节点为k(k个链表),树高为logk。
  • 因此,时间复杂度为:O(aklogk)。k个链表一共有n个节点,所以,a简化为 n k \tfrac{n}{k} kn时间复杂度简化为:O(nlogk)
1.3.2 空间复杂度
  • 递归调用,栈深度为树高,因此,空间复杂度为O(logk)

2、优先队列

  • 给定一组元素,使得队列的头是最小/大元素。

2.1 PriorityQueue的使用

public class Main {public static void main(String[] args) {ListNode listNode1 = new ListNode(2);ListNode listNode2 = new ListNode(1);listNode1.setNext(listNode2);// 小根堆Queue<ListNode> queue = new PriorityQueue<>(Comparator.comparingInt(ListNode::getVal));// 将指定的元素插入到此优先级队列中。(相当于offer()方法)queue.add(listNode1);queue.add(listNode2);while (!queue.isEmpty()) {// 检索并删除此队列的头,如果此队列为空,则返回 null 。System.out.println(queue.poll());}}
}/*
ListNode(val=1, next=null) 
ListNode(val=2, next=ListNode(val=1, next=null))
*/
  • 既然要对元素进行排序,要么元素的类实现了Comparable接口(这个要求较高),要么就传入一个自定义的Comparator(这个更灵活)。

2.2 本题代码

/*** Definition for singly-linked list.* public class ListNode {*     int val;*     ListNode next;*     ListNode() {}*     ListNode(int val) { this.val = val; }*     ListNode(int val, ListNode next) { this.val = val; this.next = next; }* }*/
class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) {return null;}ListNode dummy = new ListNode(), p = dummy;Queue<ListNode> queue = new PriorityQueue<>((node1, node2) -> node1.val - node2.val);for (int i = 0; i < lists.length; i++) {if (lists[i] != null) {ListNode tmp = lists[i];while (tmp != null) {queue.add(tmp);tmp = tmp.next;}}}while (!queue.isEmpty()) {ListNode node = queue.poll();p.next = node;p = p.next;}p.next = null; // 合并升序链表问题,别忘了处理尾节点,否则链表可能成环。return dummy.next;}
}
2.2.1 进一步优化

没必要一次性将所有node都加入优先队列。

class Solution {public ListNode mergeKLists(ListNode[] lists) {if (lists.length == 0) {return null;}ListNode dummy = new ListNode(), p = dummy;Queue<ListNode> queue = new PriorityQueue<>(lists.length, (node1, node2) -> node1.val - node2.val);for (ListNode head : lists) {if (head != null) {queue.offer(head);}}while (!queue.isEmpty()) {ListNode node = queue.poll();p.next = node;p = p.next;if (node.next != null) {queue.offer(node.next);}}p.next = null;return dummy.next;}
}

2.3 分析这种解法的时空复杂度

2.3.1 时间复杂度
  • 一个k个链表,总共有n个节点。
  • 每个节点都会offer和poll优先队列各一次。
  • 每次的时间复杂度为O(logk):队列中最多k个元素,组成的树高为logk。

我们这里用到的优先队列,本质是小根堆,即一种特殊的完全二叉树。一棵由k个元素组成的完全二叉树,其树高为logk。

  • 因此,时间复杂度为O(nlogk)
2.3.2 空间复杂度
  • 队列中最多k个元素,因此空间复杂度为O(k)

相关文章:

  • 番外篇 | YOLOv8算法解析和实战应用:车辆检测 + 车辆追踪 + 行驶速度计算
  • 【shell脚本速成】函数
  • 五十三、openlayers官网示例Layer Spy解析——跟随鼠标透视望远镜效果、图层剪裁
  • LeetCode 3186 最大施法伤害
  • 如何选择适合的LabVIEW版本进行开发
  • 注解详解系列 - @ResponseStatus
  • Java中将文件转换为Base64编码的字节码
  • LabVIEW的热门应用
  • JAVA学习笔记DAY6——SSM_Spring
  • 在Linux上为Windows目标配置Qt交叉编译
  • 鸿蒙开发网络管理:【@ohos.request (上传下载)】
  • 48-4 内网渗透 - Rotten Potato(烂土豆) 提权
  • StableSwarmUI 安装教程(详细)
  • 【朝花夕拾】RT1170 CSI 如何使能摄像头Y8功能
  • 【自动驾驶】从零开始做自动驾驶小车
  • Bootstrap JS插件Alert源码分析
  • Django 博客开发教程 16 - 统计文章阅读量
  • React中的“虫洞”——Context
  • Redux系列x:源码分析
  • spring boot 整合mybatis 无法输出sql的问题
  • SpringCloud(第 039 篇)链接Mysql数据库,通过JpaRepository编写数据库访问
  • 初探 Vue 生命周期和钩子函数
  • 从PHP迁移至Golang - 基础篇
  • 免费小说阅读小程序
  • 判断客户端类型,Android,iOS,PC
  • 使用前端开发工具包WijmoJS - 创建自定义DropDownTree控件(包含源代码)
  • 我感觉这是史上最牛的防sql注入方法类
  • 正则表达式小结
  • k8s使用glusterfs实现动态持久化存储
  • NLPIR智能语义技术让大数据挖掘更简单
  • ​14:00面试,14:06就出来了,问的问题有点变态。。。
  • ​zookeeper集群配置与启动
  • #Datawhale X 李宏毅苹果书 AI夏令营#3.13.2局部极小值与鞍点批量和动量
  • #QT(一种朴素的计算器实现方法)
  • #我与Java虚拟机的故事#连载02:“小蓝”陪伴的日日夜夜
  • #我与Java虚拟机的故事#连载10: 如何在阿里、腾讯、百度、及字节跳动等公司面试中脱颖而出...
  • (1)Jupyter Notebook 下载及安装
  • (AngularJS)Angular 控制器之间通信初探
  • (M)unity2D敌人的创建、人物属性设置,遇敌掉血
  • (vue)el-tabs选中最后一项后更新数据后无法展开
  • (补)B+树一些思想
  • (超简单)构建高可用网络应用:使用Nginx进行负载均衡与健康检查
  • (附源码)计算机毕业设计SSM基于健身房管理系统
  • (七)Appdesigner-初步入门及常用组件的使用方法说明
  • (三)docker:Dockerfile构建容器运行jar包
  • (深度全面解析)ChatGPT的重大更新给创业者带来了哪些红利机会
  • (十六)、把镜像推送到私有化 Docker 仓库
  • (十五)devops持续集成开发——jenkins流水线构建策略配置及触发器的使用
  • (微服务实战)预付卡平台支付交易系统卡充值业务流程设计
  • (已解决)什么是vue导航守卫
  • (原创) cocos2dx使用Curl连接网络(客户端)
  • (转)程序员疫苗:代码注入
  • (转)重识new
  • .NET LINQ 通常分 Syntax Query 和Syntax Method
  • .NET MVC第三章、三种传值方式