当前位置: 首页 > news >正文

如何实现一棵红黑树

目录

1.什么是红黑树

2.红黑树的实现

2.1红黑树的插入

新插入的结点应该是什么颜色的呢?

插入情况的分析

​编辑插入代码如下所示

2.2红黑树的查找

2.2检测红黑树


1.什么是红黑树?

红黑树是一棵接近平衡的二叉搜索树。由于AVL树在频繁大量改变数据的情况下,需要进行很多的旋转,会降低效率,因此,需要新的方案解决AVL树的不足,于是,有大佬发明了红黑树;红黑树是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是red或black。 通过对各个结点着色方式的限制红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。着色方式限制如下:

  • 每个结点不是红色就是黑色,但根节点必须是黑色的。
  • 如果一个节点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)。
  • 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点(每条路径都包含相同数量的黑色结点)。
  • 注意:红黑树中的路径不是走到叶子结点,而是走到空。

为什么满足上述条件就可以保证最长路径不超过最短路径的2倍呢?极端条件下,最短路径为全黑,最长路径必须是一黑一红交替连接;此时,最长路径正好等于最短路径的2倍。

对比AVL树:AVL树高度很接近log_N,红黑树高度很接近2log_N,所以红黑树的查询效率比AVL树略差,但是几乎可以忽略不计,因为log_N足够小,所以他们之间查找的效率微乎其微。

2.红黑树的实现

(本文旨在了解红黑树,重点实现红黑树的插入)

2.1红黑树的插入

新插入的结点应该是什么颜色的呢?

红黑树的插入过程中需要保持红黑树的性质,所以,插入之前,每条路径上的黑色结点的数量是相等的,如果新插入的结点是黑色的,必然会破坏每条路径上黑色结点的数量相等的条件,需要调整;

如果插入红色结点呢?如果插入结点的父亲是黑色的,则没有破坏红黑树的性质,如果插入结点的父亲是红色的,则破坏了不能出现连续的红色结点的性质,需要调整。

总结一下就是,如果插入的结点是黑色的, 那么每次都需要调整,如果插入的结点是红色的,只有父结点是红色的,才需要调整;所以我们选择新增结点的颜色是红色的。

插入情况的分析

因为我们插入的结点的颜色是红色的,也就是上图中的cur结点,因为,插入之前的树是满足红黑树的性质的,所以,如果出现矛盾的话,p的颜色一定是红色的, g的结点一定是黑色的;此时,只剩下u结点的情况是不确定的,所以我们只需要分析u节点的情况。

情况一:u节点存在且为红色。处理方式为变色,p和u变黑g变红,如果g是根,把g变黑即可,如果g不是根,把g当成c,继续往上处理。如下图所示:

情况二:u不存在/u存在且为黑。在该情况下,又可以细分出四种情况。

  • p为g的左孩子,c为p的左孩子,以p为旋转中心进行右单旋调整。如下图所示:

  • p为g的右孩子,c为p的右孩子,以p为旋转中心进行左单旋调整。如下图所示:

  • p为g的左孩子,c为p的右孩子,以p为旋转中心进行左单旋,再以g为旋转中心进行右单旋,最后将cur变黑,将g变红。如下图所示:

  • p为g的右孩子,c为p的左孩子,以p为旋转中心进行右单旋,再以g为旋转中心进行左单旋,最后将cur变黑,将g变红。如下图所示:

插入代码如下所示

旋转操作和AVL树是相同的,此处不做讲解,不会的读者推荐阅读AVL树中有详细讲解

    bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);_root->_col = BLACK;return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv); // 红色的if (parent->_kv.first < kv.first){parent->_right = cur;}else{parent->_left = cur;}cur->_parent = parent;while (parent && parent->_col == RED){Node* grandfather = parent->_parent;if (parent == grandfather->_left){Node* uncle = grandfather->_right;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色if (cur == parent->_left){//       g//    p    u// cRotateR(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//       g//    p     u//      cRotateL(parent);RotateR(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;} }else{Node* uncle = grandfather->_left;// 情况一:叔叔存在且为红if (uncle && uncle->_col == RED){// 变色parent->_col = uncle->_col = BLACK;grandfather->_col = RED;// 继续往上处理cur = grandfather;parent = cur->_parent;}else{// 情况二:叔叔不存在或者存在且为黑// 旋转+变色//      g//   u     p//            cif (cur == parent->_right){RotateL(grandfather);parent->_col = BLACK;grandfather->_col = RED;}else{//		g//   u     p//      cRotateR(parent);RotateL(grandfather);cur->_col = BLACK;grandfather->_col = RED;}break;}}}_root->_col = BLACK;return true;}

2.2红黑树的查找

在红黑树查找一个值和在AVL树中查找一个值是相同的。代码如下所示:

    Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_kv.first < key){cur = cur->_right;}else if (cur->_kv.first > key){cur = cur->_left;}else{return cur;}}return NULL;}

2.2检测红黑树

如何检测我们实现的红黑树是否正确呢?我们只需要检测该树是否满足红黑树的性质,也就是一下三点:

  • 1.根是黑色的
  • 2.没有连续的红色结点
  • 3.每条路径上的黑色结点的数量相等

检测策略:先求出一条路径上黑色结点的数量作为标准值,然后依次求每一条路径上黑色结点的数量,与标准值比较。代码如下:

bool Check(Node* cur, int blackNum, int refBlackNum){if (cur == nullptr){if (refBlackNum != blackNum){cout << "黑色节点的数量不相等" << endl;return false;}//cout << blackNum << endl;return true;}if (cur->_col == RED && cur->_parent->_col == RED){cout << cur->_kv.first << "存在连续的红色节点" << endl;return false;}if (cur->_col == BLACK)++blackNum;return Check(cur->_left, blackNum, refBlackNum)&& Check(cur->_right, blackNum, refBlackNum);}bool IsBalance(){if (_root && _root->_col == RED)return false;int refBlackNum = 0;Node* cur = _root;while (cur){if(cur->_col == BLACK)refBlackNum++;cur = cur->_left;}return Check(_root, 0, refBlackNum);}

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • Element-UI自学实践(二)
  • 【Node】【4】事件循环和EventEmitter类
  • 2024年特种设备作业人员考试题库及答案(流动式起重机Q2)
  • 查找数学类文献的专业数据库有哪些 如何获取这些数据库资源
  • Blazor官方文档学习记录
  • 2024.8.24
  • iPhone抹掉数据后能恢复吗?详解数据恢复的可能性与方法
  • 面向对象02:构造器详解
  • VScode 连接远程服务器
  • CLIP-VIT-L + Qwen 多模态源码阅读 - 语言模型篇(3)
  • 在vs+QT中使用QT的库(multimedia.lib)
  • 以简单的例子从头开始建spring boot web多模块项目(一)
  • 面向对象08:什么是多态
  • gping
  • sqli-labsSQL手工注入第26-30关
  • [PHP内核探索]PHP中的哈希表
  • 【跃迁之路】【585天】程序员高效学习方法论探索系列(实验阶段342-2018.09.13)...
  • Angular 响应式表单 基础例子
  • angular学习第一篇-----环境搭建
  • es6要点
  • Javascript 原型链
  • leetcode讲解--894. All Possible Full Binary Trees
  • maya建模与骨骼动画快速实现人工鱼
  • mysql innodb 索引使用指南
  • Object.assign方法不能实现深复制
  • php面试题 汇集2
  • RedisSerializer之JdkSerializationRedisSerializer分析
  • Windows Containers 大冒险: 容器网络
  • 闭包--闭包作用之保存(一)
  • 翻译 | 老司机带你秒懂内存管理 - 第一部(共三部)
  • 复杂数据处理
  • 关于 Cirru Editor 存储格式
  • 理解IaaS, PaaS, SaaS等云模型 (Cloud Models)
  • 每个JavaScript开发人员应阅读的书【1】 - JavaScript: The Good Parts
  • 深度学习中的信息论知识详解
  • 使用common-codec进行md5加密
  • 它承受着该等级不该有的简单, leetcode 564 寻找最近的回文数
  • 学习Vue.js的五个小例子
  • “十年磨一剑”--有赞的HBase平台实践和应用之路 ...
  • ​ 无限可能性的探索:Amazon Lightsail轻量应用服务器引领数字化时代创新发展
  • #100天计划# 2013年9月29日
  • #includecmath
  • $(selector).each()和$.each()的区别
  • (175)FPGA门控时钟技术
  • (2024最新)CentOS 7上在线安装MySQL 5.7|喂饭级教程
  • (42)STM32——LCD显示屏实验笔记
  • (C语言)fread与fwrite详解
  • (zt)最盛行的警世狂言(爆笑)
  • (二十六)Java 数据结构
  • (非本人原创)我们工作到底是为了什么?​——HP大中华区总裁孙振耀退休感言(r4笔记第60天)...
  • (附源码)ssm考生评分系统 毕业设计 071114
  • (九)One-Wire总线-DS18B20
  • (一)【Jmeter】JDK及Jmeter的安装部署及简单配置
  • (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly DetectionRecommender Systems...
  • (转)ORM