当前位置: 首页 > news >正文

传统CV算法——基于 SIFT 特征点检测与匹配实现全景图像拼接

全景图像拼接实现

定义 Stitcher 的类,用于实现两张图片的拼接。使用的技术是基于 SIFT 特征点检测与匹配,以及利用视角变换矩阵来对齐和拼接图像。

import numpy as np
import cv2class Stitcher:#拼接函数def stitch(self, images, ratio=0.75, reprojThresh=4.0,showMatches=False):#获取输入图片(imageB, imageA) = images#检测A、B图片的SIFT关键特征点,并计算特征描述子(kpsA, featuresA) = self.detectAndDescribe(imageA)(kpsB, featuresB) = self.detectAndDescribe(imageB)# 匹配两张图片的所有特征点,返回匹配结果M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)# 如果返回结果为空,没有匹配成功的特征点,退出算法if M is None:return None# 否则,提取匹配结果# H是3x3视角变换矩阵      (matches, H, status) = M# 将图片A进行视角变换,result是变换后图片result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))self.cv_show('result', result)# 将图片B传入result图片最左端result[0:imageB.shape[0], 0:imageB.shape[1]] = imageBself.cv_show('result', result)# 检测是否需要显示图片匹配if showMatches:# 生成匹配图片vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)# 返回结果return (result, vis)# 返回匹配结果return resultdef cv_show(self,name,img):cv2.imshow(name, img)cv2.waitKey(0)cv2.destroyAllWindows()def detectAndDescribe(self, image):# 将彩色图片转换成灰度图gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 建立SIFT生成器descriptor = cv2.SIFT_create()# 检测SIFT特征点,并计算描述子(kps, features) = descriptor.detectAndCompute(image, None)# 将结果转换成NumPy数组kps = np.float32([kp.pt for kp in kps])# 返回特征点集,及对应的描述特征return (kps, features)def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):# 建立暴力匹配器matcher = cv2.BFMatcher()# 使用KNN检测来自A、B图的SIFT特征匹配对,K=2rawMatches = matcher.knnMatch(featuresA, featuresB, 2)matches = []for m in rawMatches:# 当最近距离跟次近距离的比值小于ratio值时,保留此匹配对if len(m) == 2 and m[0].distance < m[1].distance * ratio:# 存储两个点在featuresA, featuresB中的索引值matches.append((m[0].trainIdx, m[0].queryIdx))# 当筛选后的匹配对大于4时,计算视角变换矩阵if len(matches) > 4:# 获取匹配对的点坐标ptsA = np.float32([kpsA[i] for (_, i) in matches])ptsB = np.float32([kpsB[i] for (i, _) in matches])# 计算视角变换矩阵(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)# 返回结果return (matches, H, status)# 如果匹配对小于4时,返回Nonereturn Nonedef drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):# 初始化可视化图片,将A、B图左右连接到一起(hA, wA) = imageA.shape[:2](hB, wB) = imageB.shape[:2]vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")vis[0:hA, 0:wA] = imageAvis[0:hB, wA:] = imageB# 联合遍历,画出匹配对for ((trainIdx, queryIdx), s) in zip(matches, status):# 当点对匹配成功时,画到可视化图上if s == 1:# 画出匹配对ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))cv2.line(vis, ptA, ptB, (0, 255, 0), 1)# 返回可视化结果return vis

类和方法解释:

  1. stitch 方法:

    • 输入参数:images 是包含两张图片的元组,ratio 用于筛选匹配的阈值,reprojThresh 是计算单应性矩阵的阈值,showMatches 决定是否显示匹配结果图。
    • 功能:拼接两张图片,并可选择是否显示匹配过程中的关键点匹配。
    • 流程:
      • 使用 detectAndDescribe 方法分别检测两张图片的 SIFT 特征点和计算描述子。
      • 使用 matchKeypoints 方法对特征点进行匹配。
      • 判断匹配是否成功;若成功,使用单应性矩阵 H 通过透视变换对其中一张图片进行变换,然后与另一张图片合并。
  2. cv_show 方法:

    • 显示图像并等待用户关闭窗口。
  3. detectAndDescribe 方法:

    • 功能:将输入的图像转换为灰度图,然后使用 SIFT 算法检测关键点并计算描述子。
    • 返回:关键点的位置和对应的描述子。
  4. matchKeypoints 方法:

    • 功能:对输入的两组特征描述子进行匹配。
    • 实现:使用 KNN (K-Nearest Neighbors) 方法,具体为 K=2,这意味着每个点会找到两个最近的邻点以决定是否为好的匹配。
    • 匹配准则:最近距离与次近距离的比值小于 ratio 时认为是好的匹配。
    • 当筛选后的匹配对数量足够多(大于4)时,使用这些匹配点计算单应性矩阵 H
  5. drawMatches 方法:

    • 功能:可视化显示两图的匹配情况。
    • 实现:在一张新图上并排显示两张原图,并将匹配的点对用线连接起来。

重要步骤总结:

  1. 特征点检测与描述子计算

    • 使用 SIFT 算法检测图像的关键点,并计算每个点的描述子。这一步是识别图像中的特征并提取有用信息的关键步骤。
  2. 特征点匹配

    • 使用 KNN 和比值测试来筛选良好的匹配点。这一步是确保两图中对应的特征点确实相似,为后续的图像对齐打下基础。
  3. 计算单应性矩阵并进行图像变换

    • 使用 RANSAC 算法基于匹配点对计算单应性矩阵,这一矩阵能够描述一张图像到另一张图像的透视变换。
    • 使用该矩阵通过透视变换将一张图像变形,使其与另一张图像对齐。
  4. 图像拼接

    • 将变换后的图像与另一张图像合并,形成一个单一的更大的图像。
  5. 结果展示

    • 可选地显示特征点的匹配情况,帮助理解两图是如何通过匹配点关联起来的。

骤,可以更好地理解和验证算法的有效性及精确性。

知识点讲解:

  1. SIFT(Scale-Invariant Feature Transform):

    • SIFT 是一种用于图像特征检测的算法,非常适合于进行图像匹配及物体识别。关键的优势在于它对图像的缩放、旋转甚至是亮度变化都保持不变性,使其在不同视角和环境下的图像匹配中表现出色。
  2. 特征匹配与筛选机制:

    • 通过 KNN 算法获取每个特征点的最近邻点。然后利用 Lowe 的比值测试,即最近距离与次近距离的比值小于某个阈值(通常是 0.75),来判断是否为好的匹配。这种方法可以有效减少错误匹配的可能。
  3. 单应性矩阵(Homography):

    • 单应性矩阵是一个 3x3 的变换矩阵,它描述了两个平面之间的透视变换。在图像拼接中,单应性矩阵用于将一个图像通过透视变换调整,使其与另一个图像对齐。
  4. RANSAC(Random Sample Consensus)算法:

    • RANSAC 是一种鲁棒的参数估计方法,用于从一组包含异常值的观测数据中估计数学模型的参数。在特征点匹配过程中,RANSAC 能够帮助排除错误的匹配点,提供更准确的单应性矩阵估计。
  5. 图像变换和拼接:

    • 利用计算得到的单应性矩阵,通过 cv2.warpPerspective 方法对一张图像进行透视变换。变换后的图像会根据单应性矩阵调整其视角,以便与另一张图像的视角匹配。随后,将这两张图像合并在一起,形成一个连续的大图像。
  6. 可视化匹配:

    • 如果需要,可以通过 drawMatches 方法生成一个可视化的匹配结果图,该图展示了两张图像中被成功匹配的特征点和它们之间的连线。这对于分析和展示匹配效果非常有用。

调用实践

from Stitcher import Stitcher
import cv2# 读取拼接图片
imageA = cv2.imread("left_01.png")
imageB = cv2.imread("right_01.png")# 把图片拼接成全景图
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)# 显示所有图片
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

拼接前图像

在这里插入图片描述

在这里插入图片描述
结果:
在这里插入图片描述

资料下载地址

全景图像拼接

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • C++:入门篇(补充C语言中的不足)
  • TestCraft - GPT支持的测试想法生成器和自动化测试生成器
  • 【论文阅读】01-Survey on Temporal Knowledge Graph
  • PhpStorm 下调试功能配置
  • 粉丝+1,马斯克点赞《黑神话:悟空》
  • PHP一站式解决方案高级房产系统小程序源码
  • 【在Unity完成三维场景多人在线同时操作的实现方式】
  • 使用Protocol Buffers传输数据
  • 李沐深度学习 自制数据集
  • GenAI 客户支持 — 第 3 部分:为人类设计聊天机器人的聊天界面
  • 数据结构之红黑树的 “奥秘“
  • HarmonyOS学习(七)——UI(五)常用布局总结
  • 多目标应用:四种多目标优化算法(NSGA2、NSPSO、NSDBO、NSCOA)求解柔性作业车间调度问题(FJSP),MATLAB代码
  • ffmpeg7.0 AVFrame的分配与释放
  • 2024年企业级电脑监控软件推荐,精选的电脑监控软件
  • php的引用
  • [ 一起学React系列 -- 8 ] React中的文件上传
  • CentOS7简单部署NFS
  • create-react-app做的留言板
  • EOS是什么
  • ES6 ...操作符
  • Java知识点总结(JavaIO-打印流)
  • js继承的实现方法
  • React组件设计模式(一)
  • Storybook 5.0正式发布:有史以来变化最大的版本\n
  • webpack项目中使用grunt监听文件变动自动打包编译
  • 诡异!React stopPropagation失灵
  • 回顾 Swift 多平台移植进度 #2
  • 可能是历史上最全的CC0版权可以免费商用的图片网站
  • 使用 Docker 部署 Spring Boot项目
  • 腾讯优测优分享 | 你是否体验过Android手机插入耳机后仍外放的尴尬?
  • 《天龙八部3D》Unity技术方案揭秘
  • ​插件化DPI在商用WIFI中的价值
  • ## 1.3.Git命令
  • #数据结构 笔记三
  • (01)ORB-SLAM2源码无死角解析-(56) 闭环线程→计算Sim3:理论推导(1)求解s,t
  • (1)svelte 教程:hello world
  • (1/2) 为了理解 UWP 的启动流程,我从零开始创建了一个 UWP 程序
  • (接口封装)
  • ./include/caffe/util/cudnn.hpp: In function ‘const char* cudnnGetErrorString(cudnnStatus_t)’: ./incl
  • .NET CORE使用Redis分布式锁续命(续期)问题
  • .net websocket 获取http登录的用户_如何解密浏览器的登录密码?获取浏览器内用户信息?...
  • .net 获取某一天 在当月是 第几周 函数
  • .net 怎么循环得到数组里的值_关于js数组
  • .NET/C# 在代码中测量代码执行耗时的建议(比较系统性能计数器和系统时间)
  • .Net6使用WebSocket与前端进行通信
  • .Net调用Java编写的WebServices返回值为Null的解决方法(SoapUI工具测试有返回值)
  • @cacheable 是否缓存成功_让我们来学习学习SpringCache分布式缓存,为什么用?
  • @private @protected @public
  • [@Controller]4 详解@ModelAttribute
  • [240621] Anthropic 发布了 Claude 3.5 Sonnet AI 助手 | Socket.IO 拒绝服务漏洞
  • [AHK] WinHttpRequest.5.1报错 0x80092004 找不到对象或属性
  • [Android]常见的数据传递方式
  • [Android]使用Android打包Unity工程
  • [BPU部署教程] 教你搞定YOLOV5部署 (版本: 6.2)