当前位置: 首页 > news >正文

嵌入式通信原理—SPI总线通信原理与应用

文章目录

    • SPI 简介
      • 基本原理
      • 工作模式
      • 特点
    • SPI寻址方式
      • 1. 片选(Chip Select, CS)
      • 2. 多从设备通信
      • 3. 菊花链(Daisy-Chain)模式
      • 4. 地址寄存器(应用层)
    • SPI通信过程
      • 时钟信号生成(SCLK)
      • 数据传输(MOSI/MISO)
      • 数据采样与移位
      • 通信时序图
    • 极性和相位
      • 1. 时钟极性(CPOL)
      • 2. 时钟相位(CPHA)
      • SPI 的 4 种工作模式
      • 如何选择 CPOL 和 CPHA

SPI 简介

SPI(Serial Peripheral Interface)是一种同步串行通信协议,用于短距离的设备之间数据传输。它常用于微控制器与外部设备(如传感器、闪存、显示器等)的通信。SPI 具有以下主要特点:

基本原理

SPI 是主从模式的通信协议,通常包括一个主设备(Master)和一个或多个从设备(Slave)。主设备控制通信的时序,从设备根据主设备的指令进行响应。

SPI 使用以下四条主要信号线:

  1. MOSI(Master Out Slave In): 主设备发送数据到从设备的线路。
  2. MISO(Master In Slave Out): 从设备发送数据到主设备的线路。
  3. SCLK(Serial Clock): 主设备生成的时钟信号,用于同步数据传输。
  4. CS(Chip Select): 用于选择特定从设备进行通信,通常为低电平激活。

工作模式

SPI 通过时钟信号的不同相位和极性组合形成 4 种工作模式(Mode 0、1、2、3)。这 4 种模式根据 SCLK 的极性(CPOL)和相位(CPHA)决定数据的采样和发送时刻。

特点

  • 全双工同步通信: SPI 同时进行数据发送和接收,主设备和从设备可以同时发送和接收数据。
  • 速度快: 由于是硬件控制的同步通信,SPI 的传输速度较高,通常比 I²C 等其他协议更快。
  • 多从设备: 一个主设备可以控制多个从设备,通过单独的CS 线选择不同的从设备。
  • 简单协议: SPI 协议没有复杂的仲裁或地址机制,相对容易实现。

在这里插入图片描述

SPI寻址方式

在 SPI 通信中,寻址方式主要是通过片选(Chip Select, CS)线来实现的。与 I²C 等协议不同,SPI 没有内置的寻址机制,具体是通过以下方式选择和管理从设备的:

1. 片选(Chip Select, CS)

SPI 使用片选线(也称为从选择线,SS/CS)来选择与哪个从设备进行通信,主设备需要向对应从设备的CS线上发送使能信号。每个从设备通常都有自己独立的 CS 引脚。当主设备需要与某个从设备通信时,它会将对应从设备的 CS 线拉低(即置为低电平,active low,高电平也可以,根据从机而定),表示选择该从设备进行通信。其他未被选中的从设备保持 CS 线高电平,不参与通信。

2. 多从设备通信

如果在一个 SPI 总线上有多个从设备,主设备需要为每个从设备提供单独的 CS 线。典型的 SPI 多从设备通信过程如下:

  • 主设备通过拉低某个从设备的 CS 线来选择该从设备。
  • 其他未选中的从设备的 CS 线保持高电平,因此它们不会响应 SPI 通信信号。
  • 选中设备通过 MOSI 线接收数据,通过 MISO 线向主设备发送数据。
  • 当通信结束后,主设备将该从设备的 CS 线拉高,停止与该设备的通信。

例如,若有 3 个从设备,主设备可能需要 3 根 CS 线分别控制每个从设备,标记为 CS1、CS2、CS3。当主设备要与从设备 2 通信时,会拉低 CS2,进行通信,而 CS1 和 CS3 保持高电平。

3. 菊花链(Daisy-Chain)模式

在某些特殊场景下,多个从设备可以通过 菊花链 连接在一个 SPI 总线上。菊花链模式下,从设备之间依次连接,数据从一个从设备流向下一个从设备。这种模式可以通过减少主设备上的 CS 线数量来节省引脚,但通信方式较为复杂。

在菊花链模式下,主设备通过串行时钟(SCLK)发送数据,数据依次经过每个从设备。主设备发送的数据经过所有从设备后,最后一个从设备将数据回传给主设备。此模式通常用于某些特定类型的设备,如 LED 驱动器或移位寄存器。

4. 地址寄存器(应用层)

虽然 SPI 协议本身没有设备地址机制,但可以通过应用层协议来实现类似的寻址功能。主设备发送的第一字节或前几位可以定义为设备的虚拟地址,只有匹配该地址的从设备会响应。在这种方式下,SPI 寻址逻辑需要通过硬件或软件协议来设计和实现。

在这里插入图片描述

SPI通信过程

时钟信号生成(SCLK)

主设备生成的时钟信号 (SCLK) 用于同步数据的传输。数据在时钟的上升沿或下降沿进行采样或发送(取决于设置的 CPOL 和 CPHA 模式)。

数据传输(MOSI/MISO)

  • 数据发送(MOSI): 主设备通过 MOSI(Master Out Slave In)线向从设备发送数据。主设备和从设备在时钟的相应沿根据协议设置同步数据发送。
  • 数据接收(MISO): 同时,从设备可以通过 MISO(Master In Slave Out)线向主设备发送数据。由于 SPI 是全双工通信,数据发送和接收可以在同一时刻进行。

通常数据位数为 8 位,主设备每发送一个字节,从设备无需应答主设备,发完一个数据之后,立即再发送下一个字节。数据的传输顺序一般是从最高位(MSB)到最低位(LSB),但也可以通过配置改变。

数据采样与移位

  • 在数据传输过程中,数据位在时钟的某个边沿被送出,在另一边沿被接收。具体的数据采样时刻取决于时钟的极性(CPOL)和相位(CPHA)。
  • 主设备和从设备内部有 移位寄存器,每次时钟脉冲会导致移位寄存器中的数据往左移一位,直至完成整个字节的发送和接收。

通信时序图

在这里插入图片描述

极性和相位

在 SPI 通信中,时钟极性(CPOL)和相位(CPHA)是用于定义时钟信号的特性和数据采样时间的两个重要参数。这两个参数决定了数据在何时发送和接收。为了确保主设备和从设备能够正确通信,双方的时钟极性和相位必须一致。

1. 时钟极性(CPOL)

CPOL 定义了时钟信号在空闲状态下的电平。

  • CPOL = 0:空闲时钟线为 低电平
  • CPOL = 1:空闲时钟线为 高电平

2. 时钟相位(CPHA)

CPHA 定义了数据采样的时刻,即在时钟的哪个边沿对数据进行采样。

  • CPHA = 0:数据在第一个时钟边沿(时钟脉冲的第一个跳变沿,如上升沿或下降沿)进行采样或发送。
  • CPHA = 1:数据在第二个时钟边沿(时钟脉冲的第二个跳变沿,如上升沿或下降沿)进行采样或发送。

SPI 的 4 种工作模式

CPOLCPHA 的组合,SPI 有 4 种工作模式。这些模式规定了时钟信号的特性和数据传输的时序。主设备和从设备必须工作在相同的模式下,才能保证通信的正确性。

模式 0:CPOL = 0,CPHA = 0

  • 时钟空闲状态为低电平
  • 数据在上升沿(第一个边沿)采样,在下降沿发送。
  • 时钟处于低电平,数据在第一个上升沿采样。

模式 1:CPOL = 0,CPHA = 1

  • 时钟空闲状态为低电平
  • 数据在下降沿(第二个边沿)采样,在上升沿发送。
  • 时钟处于低电平,数据在第一个上升沿发送,第二个下降沿采样。

模式 2:CPOL = 1,CPHA = 0

  • 时钟空闲状态为高电平
  • 数据在下降沿(第一个边沿)采样,在上升沿发送。
  • 时钟处于高电平,数据在第一个下降沿采样。

模式 3:CPOL = 1,CPHA = 1

  • 时钟空闲状态为高电平
  • 数据在上升沿(第二个边沿)采样,在下降沿发送。
  • 时钟处于高电平,数据在第一个下降沿发送,第二个上升沿采样。

如何选择 CPOL 和 CPHA

  • CPOL 决定了空闲时钟的电平状态(高电平或低电平)。
  • CPHA 决定了数据在第一个边沿(上升沿或下降沿)还是第二个边沿进行采样。
  • 不同的设备可能要求不同的工作模式,选择 CPOL 和 CPHA 时需参照从设备的规格文档。主设备和从设备的 SPI 模式必须匹配才能成功通信。

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • Python数据分析及可视化教程--商城订单为例-适用电商相关进行数据分析---亲测可用!!!!
  • 【AI大模型】ChatGPT模型原理介绍(下)
  • 【ESP32】ESP-IDF开发 | GPIO通用输入输出+LED点灯和按键输入例程
  • Java小区物业管理系统
  • JDK动态代理和CGLIB动态代理有什么区别?
  • 鸿蒙开发之ArkTS 基础三 数组
  • 国际商城系统怎么弄 跨境电商商城怎样上线
  • 网络安全产品认证证书大全(持续更新...)
  • YoloV10改进策略:BackBone改进|注意力改进|HCANet全局与局部的注意力模块CAFM|二次创新|即插即用
  • 代码随想录算法训练营day37
  • 7.Jmeter数据驱动(csv数据文件设置)+Jmeter数据库操作
  • Java:继承和多态(2)
  • 使用原生HTML的drag实现元素的拖拽
  • 【RAG】RAG再进化?基于长期记忆的检索增强生成新范式-MemoRAG
  • kitti数据深度图转点云坐标计算方法与教程(代码实现)
  • 30天自制操作系统-2
  • CentOS 7 防火墙操作
  • leetcode98. Validate Binary Search Tree
  • MySQL数据库运维之数据恢复
  • vue-cli在webpack的配置文件探究
  • vue和cordova项目整合打包,并实现vue调用android的相机的demo
  • vue总结
  • 基于webpack 的 vue 多页架构
  • 使用putty远程连接linux
  • 我感觉这是史上最牛的防sql注入方法类
  • 我是如何设计 Upload 上传组件的
  • 走向全栈之MongoDB的使用
  • 【干货分享】dos命令大全
  • ​​​​​​​sokit v1.3抓手机应用socket数据包: Socket是传输控制层协议,WebSocket是应用层协议。
  • ​io --- 处理流的核心工具​
  • ​ssh免密码登录设置及问题总结
  • ‌分布式计算技术与复杂算法优化:‌现代数据处理的基石
  • # Redis 入门到精通(一)数据类型(4)
  • #### golang中【堆】的使用及底层 ####
  • #AngularJS#$sce.trustAsResourceUrl
  • #我与Java虚拟机的故事#连载07:我放弃了对JVM的进一步学习
  • (14)学习笔记:动手深度学习(Pytorch神经网络基础)
  • (javaweb)Http协议
  • (pojstep1.1.1)poj 1298(直叙式模拟)
  • (附表设计)不是我吹!超级全面的权限系统设计方案面世了
  • (附源码)ssm基于微信小程序的疫苗管理系统 毕业设计 092354
  • (三)Pytorch快速搭建卷积神经网络模型实现手写数字识别(代码+详细注解)
  • (算法设计与分析)第一章算法概述-习题
  • (转载)在C#用WM_COPYDATA消息来实现两个进程之间传递数据
  • .[hudsonL@cock.li].mkp勒索加密数据库完美恢复---惜分飞
  • .bat批处理(五):遍历指定目录下资源文件并更新
  • .dwp和.webpart的区别
  • .NET 程序如何获取图片的宽高(框架自带多种方法的不同性能)
  • .net6 当连接用户的shell断掉后,dotnet会自动关闭,达不到长期运行的效果。.NET 进程守护
  • .Net开发笔记(二十)创建一个需要授权的第三方组件
  • :O)修改linux硬件时间
  • @Autowired注解的实现原理
  • [ CTF ] WriteUp- 2022年第三届“网鼎杯”网络安全大赛(白虎组)
  • [20180224]expdp query 写法问题.txt
  • [AI Google] 使用 Gemini 取得更多成就:试用 1.5 Pro 和更多智能功能