当前位置: 首页 > news >正文

资深实践篇 | 基于Kubernetes 1.61的Kubernetes Scheduler 调度详解 ...

说明:该文转载自腾讯云技术社区腾云阁,已征求作者本人同意。

源码为 k8s v1.6.1 版本,github 上对应的 commit id 为 b0b7a323cc5a4a2019b2e9520c21c7830b7f708e
本文将对 Scheduler 的调度算法原理和执行过程进行分析,重点介绍 Scheduler 算法中预选和优选的相关内容。

先来过一下Kubernetes Scheduler的基本功能
Kubernetes Scheduler 的作用是根据特定的调度算法将pod调度到指定 的工作节点(Node)上,这一过程也叫绑定(bind)。Scheduler 的输入为需要调度的 Pod 和可以被调度的节点(Node)的信息,输出为调度算法选择的 Node,并将该 pod bind 到这个 Node 。

1265122d1c5da0abcf86a844fcb2f9da4356dccd

Kubernetes Scheduler中调度算法分为两个阶段:

预选 : 根据配置的 Predicates Policies(默认为 DefaultProvider 中定义的 default predicates policies 集合)过滤掉那些不满足Policies的Nodes,剩下的Nodes作为优选的输入。

优选 : 根据配置的 Priorities Policies(默认为 DefaultProvider 中定义的 default priorities policies 集合)给预选后的Nodes进行打分排名,得分最高的Node即作为最适合的Node,该Pod就Bind到这个Node。

a015723bacf4eab2cd3b1d3dcb9a244d2e840cfb

预选规则详细说明

预先规则主要用于过滤出不符合规则的Node节点,剩下的节点作为优选的输入。在1.6.1版本中预选规则包括:

fdfa4fff90a8d68a8cac55cb2b1c62909f21b7eb

详细的规则说明:(1) NoDiskConflict : 检查在此主机上是否存在卷冲突。如果这个主机已经挂载了卷,其它使用这个卷的Pod不能调度到这个主机上。GCE 、Amazon EBS 和 Ceph RBD 使用的规则如下:

  1. GCE 允许同时挂载多个卷,只要这些卷都是只读的。
  2. Amazon EBS 不允许不同的 Pod 挂载同一个卷。
  3. Ceph RBD 不允许任何两个 pods 分享相同的 monitor,match pool 和 image。

注:ISCSI 与 GCE 一样,在卷都是只读的情况下,允许挂载两个 IQN 相同的卷。

(2) NoVolumeZoneConflict : 检查在给定的 zone 限制前提下,检查在此主机上部署 Pod 是否存在卷冲突,目前指对 PV 资源进行检查(NewVolumeZonePredicate对象predicate函数)。

(3) MaxEBSVolumeCount : 确保已挂载的 EBS 存储卷不超过设置的最大值。默认值是39。它会检查直接使用的存储卷,和间接使用这种类型存储的 PVC 。计算不同卷的总目,如果新的 Pod 部署上去后卷的数目会超过设置的最大值,那么 Pod 就不能调度到这个主机上。

(4) MaxGCEPDVolumeCount : 确保已挂载的 GCE 存储卷不超过设置的最大值。默认值是16。规则同MaxEBSVolumeCount。

(5) MaxAzureDiskVolumeCount : 确保已挂载的Azure存储卷不超过设置的最大值。默认值是16。规则同MaxEBSVolumeCount。

(6) CheckNodeMemoryPressure : 判断节点是否已经进入到内存压力状态,如果是则只允许调度内存为0标记的 Pod。

(7) CheckNodeDiskPressure : 判断节点是否已经进入到磁盘压力状态,如果是则不调度新的Pod。

(8) PodToleratesNodeTaints : Pod 是否满足节点容忍的一些条件。

(9) MatchInterPodAffinity : 节点亲和性筛选。

(10) GeneralPredicates : 包含一些基本的筛选规则(PodFitsResources、PodFitsHostPorts、HostName、MatchNodeSelector)。

(11) PodFitsResources : 检查节点上的空闲资源(CPU、Memory、GPU资源)是否满足 Pod 的需求。

(12) PodFitsHostPorts : 检查 Pod 内每一个容器所需的 HostPort 是否已被其它容器占用。如果有所需的HostPort不满足要求,那么 Pod 不能调度到这个主机上。

(13) 检查主机名称是不是 Pod 指定的 HostName。

(14) 检查主机的标签是否满足 Pod 的 nodeSelector 属性需求。

优选规则详细说明

优选规则对符合需求的主机列表进行打分,最终选择一个分值最高的主机部署 Pod。kubernetes 用一组优先级函数处理每一个待选的主机。每一个优先级函数会返回一个0-10的分数,分数越高表示主机越“好”,同时每一个函数也会对应一个表示权重的值。最终主机的得分用以下公式计算得出:

finalScoreNode = (weight1 priorityFunc1) + (weight2 priorityFunc2) + … + (weightn * priorityFuncn)

24212904b11cff72e8a7db05faad994a06c5d7d3

详细的规则说明:(1) SelectorSpreadPriority : 对于属于同一个 service、replication controller 的 Pod,尽量分散在不同的主机上。如果指定了区域,则会尽量把 Pod 分散在不同区域的不同主机上。调度一个 Pod 的时候,先查找 Pod 对于的 service或者 replication controller,然后查找 service 或 replication controller 中已存在的 Pod,主机上运行的已存在的 Pod 越少,主机的打分越高。

(2) LeastRequestedPriority : 如果新的 pod 要分配一个节点,这个节点的优先级就由节点空闲的那部分与总容量的比值((总容量-节点上pod的容量总和-新pod的容量)/总容量)来决定。CPU 和 memory 权重相当,比值最大的节点的得分最高。需要注意的是,这个优先级函数起到了按照资源消耗来跨节点分配 pods 的作用。计算公式如下:

cpu((capacity – sum(requested)) 10 / capacity) + memory((capacity – sum(requested)) 10 / capacity) / 2

(3) BalancedResourceAllocation : 尽量选择在部署 Pod 后各项资源更均衡的机器。BalancedResourceAllocation 不能单独使用,而且必须和 LeastRequestedPriority 同时使用,它分别计算主机上的 cpu 和 memory 的比重,主机的分值由 cpu 比重和 memory 比重的“距离”决定。计算公式如下:score = 10 – abs(cpuFraction-memoryFraction)*10

(4) NodeAffinityPriority : Kubernetes 调度中的亲和性机制。Node Selectors(调度时将 pod 限定在指定节点上),支持多种操作符(In、 NotIn、 Exists、DoesNotExist、 Gt、 Lt),而不限于对节点 labels 的精确匹配。另外,Kubernetes 支持两种类型的选择器,一种是 “ hard(requiredDuringSchedulingIgnoredDuringExecution)” 选择器,它保证所选的主机满足所有Pod对主机的规则要求。这种选择器更像是之前的 nodeselector,在 nodeselector 的基础上增加了更合适的表现语法。另一种 “ soft(preferresDuringSchedulingIgnoredDuringExecution)” 选择器,它作为对调度器的提示,调度器会尽量但不保证满足 NodeSelector 的所有要求。

(5) InterPodAffinityPriority : 通过迭代 weightedPodAffinityTerm 的元素计算和,并且如果对该节点满足相应的PodAffinityTerm,则将 “weight” 加到和中,具有最高和的节点是最优选的。

(6) NodePreferAvoidPodsPriority(权重1W) : 如果 Node 的 Anotation 没有设置 key-value:scheduler. alpha.kubernetes.io/ preferAvoidPods = "...",则该 node 对该 policy 的得分就是10分,加上权重10000,那么该node对该policy的得分至少10W分。如果Node的Anotation设置了,scheduler.alpha.kubernetes.io/preferAvoidPods = "..." ,如果该 pod 对应的 Controller 是 ReplicationController 或 ReplicaSet,则该 node 对该 policy 的得分就是0分。

(7) TaintTolerationPriority : 使用 Pod 中 tolerationList 与 Node 节点 Taint 进行匹配,配对成功的项越多,则得分越低。

另外在优选的调度规则中,有几个未被默认使用的规则:

(1) ImageLocalityPriority : 据主机上是否已具备 Pod 运行的环境来打分。ImageLocalityPriority 会判断主机上是否已存在 Pod 运行所需的镜像,根据已有镜像的大小返回一个0-10的打分。如果主机上不存在 Pod 所需的镜像,返回0;如果主机上存在部分所需镜像,则根据这些镜像的大小来决定分值,镜像越大,打分就越高。

(2) EqualPriority : EqualPriority 是一个优先级函数,它给予所有节点一个相等的权重。

(3) ServiceSpreadingPriority : 作用与 SelectorSpreadPriority 相同,已经被 SelectorSpreadPriority 替换。

(4) MostRequestedPriority : 在 ClusterAutoscalerProvider 中,替换 LeastRequestedPriority,给使用多资源的节点,更高的优先级。计算公式为:(cpu(10 sum(requested) / capacity) + memory(10sum(requested) / capacity)) / 2

本文转自SegmentFault-资深实践篇 | 基于Kubernetes 1.61的Kubernetes Scheduler 调度详解

相关文章:

  • 一个表单对应多个提交按钮,每个提交按钮对应不同的行为
  • MySQL用户中的%到底包不包括localhost?
  • tomcat集群时统计session与在线人数
  • 初探G6, 切换数据时保证图位置不变
  • 常见div+css网页布局(float,absolute)
  • 用PyTorch创建一个图像分类器?So easy!(Part 1)
  • 【Leetcode】Path Sum II
  • docker学习笔记
  • 3、开启debug调试模式
  • 为什么BAT公司使用微服务架构,资深架构师来告诉你原因!
  • mysql学习【第4篇】:数据库之数据类型
  • python字典操作总结
  • hadoop Hive(9)
  • 启动和测试oracle是否安装成功
  • Java初始化顺序
  • [笔记] php常见简单功能及函数
  • 【划重点】MySQL技术内幕:InnoDB存储引擎
  • 2018以太坊智能合约编程语言solidity的最佳IDEs
  • create-react-app做的留言板
  • iOS高仿微信项目、阴影圆角渐变色效果、卡片动画、波浪动画、路由框架等源码...
  • Java 9 被无情抛弃,Java 8 直接升级到 Java 10!!
  • Kibana配置logstash,报表一体化
  • leetcode386. Lexicographical Numbers
  • Spring思维导图,让Spring不再难懂(mvc篇)
  • Vue全家桶实现一个Web App
  • 翻译--Thinking in React
  • 和 || 运算
  • 警报:线上事故之CountDownLatch的威力
  • 聊聊springcloud的EurekaClientAutoConfiguration
  • 排序算法之--选择排序
  • 如何使用 OAuth 2.0 将 LinkedIn 集成入 iOS 应用
  • 如何优雅地使用 Sublime Text
  • 小程序 setData 学问多
  • - 语言经验 - 《c++的高性能内存管理库tcmalloc和jemalloc》
  • 字符串匹配基础上
  • 小白应该如何快速入门阿里云服务器,新手使用ECS的方法 ...
  • #图像处理
  • $.ajax中的eval及dataType
  • (Java)【深基9.例1】选举学生会
  • (NO.00004)iOS实现打砖块游戏(九):游戏中小球与反弹棒的碰撞
  • (Pytorch框架)神经网络输出维度调试,做出我们自己的网络来!!(详细教程~)
  • (Redis使用系列) Springboot 使用redis实现接口Api限流 十
  • (二)linux使用docker容器运行mysql
  • (附源码)计算机毕业设计SSM在线影视购票系统
  • (六)软件测试分工
  • (一)kafka实战——kafka源码编译启动
  • (转)程序员技术练级攻略
  • (转)机器学习的数学基础(1)--Dirichlet分布
  • .360、.halo勒索病毒的最新威胁:如何恢复您的数据?
  • .NET 4.0中使用内存映射文件实现进程通讯
  • .Net Attribute详解(上)-Attribute本质以及一个简单示例
  • .NET CORE Aws S3 使用
  • .NET构架之我见
  • .NET中的Exception处理(C#)
  • @Import注解详解