当前位置: 首页 > news >正文

Effective C# 原则18:实现标准的处理(Dispose)模式(译)

Effective C# 原则18:实现标准的处理(Dispose)模式

我们已经讨论过,处理一个占用了非托管资源对象是很重要的。现在是时候来讨论如何写代码来管理这些类占用的非内存资源了。一个标准的模式就是利用.Net框架提供的方法处理非内存资源。你的用户也希望你遵守这个标准的模式。也就是通过实现IDisposable接口来释放非托管的资源,当然是在用户记得调用它的时候,但如果用户忘记了,析构函数也会被动的执行。它是和垃圾回收器一起工作的,确保在一些必要时候,你的对象只会受到因析构函数而造成的性能损失。这正是管理非托管资源的好方法,因此有必要彻底的弄明白它。

处在类继承关系中顶层的基类应该实现IDisposable接口来释放资源。这个类型也应该添加一个析构函数,做为最后的被动机制。这两个方法都应该是用虚方法来释放资源,这样可以让它的派生类重载这个函数来释放它们自己的资源。派生类只有在它自己须要释放资源时才重载这个函数,并且一定要记得调用基类的方法。

开始时,如果你的类使用了非内存资源,则一定得有一个析构函数。你不能指望你的用户总是记得调用Dispose方法,否则当他们忘记时,你会丢失一些资源。这或许是因为他们没有调用Dispose的错误,但你也有责任。唯一可以确保非内存资源可以恰当释放的方法就是创建一个析构函数。所以,添加一个析构函数吧!

当垃圾回收器运行时,它会直接从内存中移除不用析构的垃圾对象。而其它有析构函数的对象还保留在内存中。这些对象被添加到一个析构队列中,垃圾回收器会起动一个线程专门来析构这些对象。当析构线程完成它的工作后,这些垃圾对象就可以从内存中移除了。就是说,须要析构的对象比不须要析构的对象在内存中待的时间要长。但你没得选择。如果你是采用的这种被动模式,当你的类型占用非托管资源时,你就必须写一个析构函数。但目前你还不用担心性能问题,下一步就保证你的用户使用更加简单,而且可以避免因为析构函数而造成的性能损失。

实现IDisposable接口是一个标准的模式来告诉用户和进行时系统:你的对象占有资源而且必须及时的释放。IDisposable接口只有一个方法:

public interface IDisposable
{
  void Dispose( );
}

实现IDisposable.Dispose()方法有责任完成下面的任务:
1、感知所有的非托管资源。
2、感知所有的托管资源(包括卸载一些事件)。
3、设置一个安全的标记来标识对象已经被处理。如果在已经处理过的对象上调用任何方法时,你可以检验这个标记并且抛出一个ObjectDisposed的异常。
4、阻止析构。你要调用GC.SuppressFinalize(this)来完成最后的工作。

通过实现IDisposable接口,你写成了两件事:第一就是提供了一个机制来及时的释放所有占用的托管资源(译注:这里就是指托管资源,当实现了这个接口后,可以通过调用Dispose来立即释放托管资源),另一个就是你提供了一个标准的模式让用户来释放非托管资源。这是十分重要的,当你在你的类型上实现了IDisposable接口以后,用户就可以避免析构时的损失。你的类就成了.Net社区中表现相当良好的成员。

但在你创建的机制中还是存在一些漏洞。如何让一个派生类清理自己的资源,同时还可以让基类很好的再做资源清理呢?(译注:因为调用Dispose方法时,必须调用基类的Dispose,当然是在基类有这个方法时。但前面说过,我们只有一个标记来标识对象是否处理过,不管先调用那个,总得有一个方法不能处理这个标记,而这就存在隐患) 如果基类重载了析构函数,或者自己添加实现了IDisposable接口,而这些方法又都是必须调用基类的方法的;否则,基类无法恰当的释放资源。同样,析构和处理共享了一些相同的职责:几乎可以肯定你是复制了析构方法和处理方法之间的代码。正如你会在原则26中学到的,重载接口的方法根本没有如你所期望的那样工作。Dispose标准模式中的第三个方法,通过一个受保护的辅助性虚函数,制造出它们的常规任务并且挂接到派生类来释放资源。基类包含接口的核心代码, 派生类提供的Dispose()虚函数或者析构函数来负责清理资源:

protected virtual void Dispose( bool isDisposing );

重载的方法同时完成析构和处理必须提供的任务,又因为它是虚函数,它为所有的派生类提供函数入口点。派生类可以重载这个函数,提供恰当的实现来释放它自己的资源,并且调用基类的函数。当
isDisposing为true时你可能同时清理托管资源和非托管资源,当isDisposing为false时你只能清理非托管资源。两种情况下,都可以调用基类的Dispose(bool)方法让它去清理它自己的资源。

当你实现这样的模式时,这里有一个简单的例子。MyResourceHog 类展示了IDisposable的实现,一个析构函数,并且创建了一个虚的Dispose方法:
public class MyResourceHog : IDisposable
{
  // Flag for already disposed
  private bool _alreadyDisposed = false;

  // finalizer:
  // Call the virtual Dispose method.
  ~MyResourceHog()
  {
    Dispose( false );
  }

  // Implementation of IDisposable.
  // Call the virtual Dispose method.
  // Suppress Finalization.
  public void Dispose()
  {
    Dispose( true );
    GC.SuppressFinalize( true );
  }

  // Virtual Dispose method
  protected virtual void Dispose( bool isDisposing )
  {
    // Don't dispose more than once.
    if ( _alreadyDisposed )
      return;
    if ( isDisposing )
    {
      // TODO: free managed resources here.
    }
    // TODO: free unmanaged resources here.
    // Set disposed flag:
    _alreadyDisposed = true;
  }
}

如果派生类有另外的清理任务,就让它实现Dispose方法:

public class DerivedResourceHog : MyResourceHog
{
  // Have its own disposed flag.
  private bool _disposed = false;

  protected override void Dispose( bool isDisposing )
  {
    // Don't dispose more than once.
    if ( _disposed )
      return;
    if ( isDisposing )
    {
      // TODO: free managed resources here.
    }
    // TODO: free unmanaged resources here.

    // Let the base class free its resources.
    // Base class is responsible for calling
    // GC.SuppressFinalize( )
    base.Dispose( isDisposing );

    // Set derived class disposed flag:
    _disposed = true;
  }
}

注和意,派生类和基类都有一个处理状态的标记,这完全是被动的。重制的标记掩盖了在处理时任何可能发生的错误,而且是单一的类型处理,而不是处理构成这个对象的所有类型。(译注:就是基类与子类各自标记一个,互不影响。)

你应该被动的写处理方法和析构函数,处理对象可能以任何顺序发生,你可能会遇到这种情况:你的类中某个成员在你调用Dispose方法以前已经被处理过了。你没有看到这种情况是因为Dispose()方法是可以多次调用的。如果在一个已经被处理过的对象上调用该方法,就什么也不发生。析构函数也有同样的规则。任何对象的引用存在于内存中时,你不用检测null引用。然而,你引用的对象可能已经处理掉了,或者它已经析构了。

这就引入用了一个非常重要的忠告:对于任何与处理和资源清理相关的方法,你必须只释放资源! 不要在处理过程中添加其它任何的任务。你在处理和清理中添加其它任务时,可能会在对象的生存期中遇到一些严重而繁杂的问题。对象在你创建它时出生,在垃圾回收器认领它时死亡。你可以认为当你的程序不能再访问它们时,它们是睡眠的。你无法访问对象,无法调用对象的方法。种种迹象表明,它们就像是死的。但对象在宣布死亡前,析构函数还有最后一气。析构函数什么也不应该做,就是清理非托管资源。如果析构函数通过某些方法让对象又变得可访问,那么它就复活了。(译注:析构函数不是用户调用的,也不由.Net系统调用,而是在由GC产生的额外线程上运行的) 它又活了,但这并不好。即使是它是从睡眼中唤醒的。这里有一个明显的例子:

public class BadClass
{
  // Store a reference to a global object:
  private readonly ArrayList _finalizedList;
  private string _msg;

  public BadClass( ArrayList badList, string msg )
  {
    // cache the reference:
    _finalizedList = badList;
    _msg = (string)msg.Clone();
  }

  ~BadClass()
  {
    // Add this object to the list.
    // This object is reachable, no
    // longer garbage. It's Back!
    _finalizedList.Add( this );
  }
}

当一个BadClass对象的析构函数执行时,它把自己的一个引用添加到了全局的链表中。这使得它自己又是可达的,它就又活了。前面向你介绍的这个方法会遇到一些让人畏缩的难题。对象已经被析构了,所以垃圾回收器从此相信再也不用调用它的析构函数了。如果你实际要析构一个可达对象,这将不会成功。其次,你的一些资源可能不再有用。GC不再从内存上移除那些只被析构队列引用的对象,但它们可能已经析构了。如果是这样,它们很可能已经不能使用了。(译注:也就是说利用上面的那个方法让对象复活后,很有可能对象是不可用的。)尽管BadClass所拥有的成员还在内存里,它们像是可以被析构或者处理,但C#语言没有一个方法可以让你控制析构的次序,你不能让这样的结构可靠的运行。不要尝试。

我还没有看到这样的代码:用这样明显的方式来复活一个对象,除非是学术上的练习。但我看过这样的代码,析构函数试图完成一些实质的工作,最后还通过析构函数的调用把引用放到对象中,从而把自己复活。析构函数里面的代码看上去是精心设计的,另外还有处理函数里的。再检查一遍,这些代码是做了其它事情,而不是释放资源!这些行为会为你的应用程序在后期的运行中产生很多BUG。删除这些方法,确保析构函数和Dispose()方法除了清理资源外,什么也不做。

在托管环境里,你不用为每一个创建的类写析构函数;只有须要释放一些使用的非托管资源时才添加,或者你的类所包含的成员有实现了IDisposable接口的时候也要添加。即使如此,你也只用实现IDisposable接口完成所有的功能就行了,不用析构函数。否则,你会限制你的派生类实现实现标准的Dispose习惯。 遵守这个我所讲叙的标准的Dispose习惯。这会让你的程序生活变得轻松,也为你的用户,也为那些从你的类创建派生类的人。

=======================
   

Item 18: Implement the Standard Dispose Pattern
We've discussed the importance of disposing of objects that hold unmanaged resources. Now it's time to cover how to write your own resource-management code when you create types that contain resources other than memory. A standard pattern is used throughout the .NET Framework for disposing of nonmemory resources. The users of your type will expect you to follow this standard pattern. The standard dispose idiom frees your unmanaged resources using the IDisposable interface when clients remember, and it uses the finalizer defensively when clients forget. It works with the Garbage Collector to ensure that your objects pay the performance penalty associated with finalizers only when necessary. This is the right way to handle unmanaged resources, so it pays to understand it thoroughly.

The root base class in the class hierarchy should implement the IDisposable interface to free resources. This type should also add a finalizer as a defensive mechanism. Both of these routines delegate the work of freeing resources to a virtual method that derived classes can override for their own resource-management needs. The derived classes need override the virtual method only when the derived class must free its own resources and it must remember to call the base class version of the function.

To begin, your class must have a finalizer if it uses nonmemory resources. You should not rely on clients to always call the Dispose() method. You'll leak resources when they forget. It's their fault for not calling Dispose, but you'll get the blame. The only way you can guarantee that nonmemory resources get freed properly is to create a finalizer. So create one.

When the Garbage Collector runs, it immediately removes from memory any garbage objects that do not have finalizers. All objects that have finalizers remain in memory. These objects are added to a finalization queue, and the Garbage Collector spawns a new thread to run the finalizers on those objects. After the finalizer thread has finished its work, the garbage objects can be removed from memory. Objects that need finalization stay in memory for far longer than objects without a finalizer. But you have no choice. If you're going to be defensive, you must write a finalizer when your type holds unmanaged resources. But don't worry about performance just yet. The next steps ensure that it's easier for clients to avoid the performance penalty associated with finalization.

Implementing IDisposable is the standard way to inform users and the runtime system that your objects hold resources that must be released in a timely manner. The IDisposable interface contains just one method:

public interface IDisposable
{
  void Dispose( );
}

 

The implementation of your IDisposable.Dispose() method is responsible for four tasks:

Freeing all unmanaged resources.

Freeing all managed resources (this includes unhooking events).

Setting a state flag to indicate that the object has been disposed. You need to check this state and throw ObjectDisposed exceptions in your public methods, if any get called after disposing of an object.

Suppressing finalization. You call GC.SuppressFinalize(this) to accomplish this task.

You accomplish two things by implementing IDisposable: You provide the mechanism for clients to release all managed resources that you hold in a timely fashion, and you give clients a standard way to release all unmanaged resources. That's quite an improvement. After you've implemented IDisposable in your type, clients can avoid the finalization cost. Your class is a reasonably well-behaved member of the .NET community.

But there are still holes in the mechanism you've created. How does a derived class clean up its resources and still let a base class clean up as well? If derived classes override finalize or add their own implementation of IDisposable, those methods must call the base class; otherwise, the base class doesn't clean up properly. Also, finalize and Dispose share some of the same responsibilities: You have almost certainly duplicated code between the finalize method and the Dispose method. As you'll learn in Item 26, overriding interface functions does not work the way you'd expect. The third method in the standard Dispose pattern, a protected virtual helper function, factors out these common tasks and adds a hook for derived classes to free resources they allocate. The base class contains the code for the core interface. The virtual function provides the hook for derived classes to clean up resources in response to Dispose() or finalization:

protected virtual void Dispose( bool isDisposing );

 

This overloaded method does the work necessary to support both finalize and Dispose, and because it is virtual, it provides an entry point for all derived classes. Derived classes can override this method, provide the proper implementation to clean up their resources, and call the base class version. You clean up managed and unmanaged resources when isDisposing is TRue; clean up only unmanaged resources when isDisposing is false. In both cases, call the base class's Dispose(bool) method to let it clean up its own resources.

Here is a short sample that shows the framework of code you supply when you implement this pattern. The MyResourceHog class shows the code to implement IDisposable, a finalizer, and create the virtual Dispose method:

public class MyResourceHog : IDisposable
{
  // Flag for already disposed
  private bool _alreadyDisposed = false;

  // finalizer:
  // Call the virtual Dispose method.
  ~MyResourceHog()
  {
    Dispose( false );
  }

  // Implementation of IDisposable.
  // Call the virtual Dispose method.
  // Suppress Finalization.
  public void Dispose()
  {
    Dispose( true );
    GC.SuppressFinalize( true );
  }

  // Virtual Dispose method
  protected virtual void Dispose( bool isDisposing )
  {
    // Don't dispose more than once.
    if ( _alreadyDisposed )
      return;
    if ( isDisposing )
    {
      // TODO: free managed resources here.
    }
    // TODO: free unmanaged resources here.
    // Set disposed flag:
    _alreadyDisposed = true;
  }
}

 

If a derived class needs to perform additional cleanup, it implements the protected Dispose method:

public class DerivedResourceHog : MyResourceHog
{
  // Have its own disposed flag.
  private bool _disposed = false;

  protected override void Dispose( bool isDisposing )
  {
    // Don't dispose more than once.
    if ( _disposed )
      return;
    if ( isDisposing )
    {
      // TODO: free managed resources here.
    }
    // TODO: free unmanaged resources here.

    // Let the base class free its resources.
    // Base class is responsible for calling
    // GC.SuppressFinalize( )
    base.Dispose( isDisposing );

    // Set derived class disposed flag:
    _disposed = true;
  }
}

 

Notice that both the base class and the derived class contain a flag for the disposed state of the object. This is purely defensive. Duplicating the flag encapsulates any possible mistakes made while disposing of an object to only the one type, not all types that make up an object.

You need to write Dispose and finalize defensively. Disposing of objects can happen in any order. You will encounter cases in which one of the member objects in your type is already disposed of before your Dispose() method gets called. You should not view that as a problem because the Dispose() method can be called multiple times. If it's called on an object that has already been disposed of, it does nothing. Finalizers have similar rules. Any object that you reference is still in memory, so you don't need to check null references. However, any object that you reference might be disposed of. It might also have already been finalized.

This brings me to the most important recommendation for any method associated with disposal or cleanup: You should be releasing resources only. Do not perform any other processing during a dispose method. You can introduce serious complications to object lifetimes by performing other processing in your Dispose or finalize methods. Objects are born when you construct them, and they die when the Garbage Collector reclaims them. You can consider them comatose when your program can no longer access them. If you can't reach an object, you can't call any of its methods. For all intents and purposes, it is dead. But objects that have finalizers get to breathe a last breath before they are declared dead. Finalizers should do nothing but clean up unmanaged resources. If a finalizer somehow makes an object reachable again, it has been resurrected. It's alive and not well, even though it has awoken from a comatose state. Here's an obvious example:

public class BadClass
{
  // Store a reference to a global object:
  private readonly ArrayList _finalizedList;
  private string _msg;

  public BadClass( ArrayList badList, string msg )
  {
    // cache the reference:
    _finalizedList = badList;
    _msg = (string)msg.Clone();
  }

  ~BadClass()
  {
    // Add this object to the list.
    // This object is reachable, no
    // longer garbage. It's Back!
    _finalizedList.Add( this );
  }
}

 

When a BadClass object executes its finalizer, it puts a reference to itself on a global list. It has just made itself reachable. It's alive again! The number of problems you've just introduced will make anyone cringe. The object has been finalized, so the Garbage Collector now believes there is no need to call its finalizer again. If you actually need to finalize a resurrected object, it won't happen. Second, some of your resources might not be available. The GC will not remove from memory any objects that are reachable only by objects in the finalizer queue, but it might have already finalized them. If so, they are almost certainly no longer usable. Although the members that BadClass owns are still in memory, they will have likely been disposed of or finalized. There is no way in the language that you can control the order of finalization. You cannot make this kind of construct work reliably. Don't try.

I've never seen code that has resurrected objects in such an obvious fashion, except as an academic exercise. But I have seen code in which the finalizer attempts to do some real work and ends up bringing itself back to life when some function that the finalizer calls saves a reference to the object. The moral is to look very carefully at any code in a finalizer and, by extension, both Dispose methods. If that code is doing anything other than releasing resources, look again. Those actions likely will cause bugs in your program in the future. Remove those actions, and make sure that finalizers and Dispose() methods release resources and do nothing else.

In a managed environment, you do not need to write a finalizer for every type you create; you do it only for types that store unmanaged types or when your type contains members that implement IDisposable. Even if you need only the Disposable interface, not a finalizer, implement the entire pattern. Otherwise, you limit your derived classes by complicating their implementation of the standard Dispose idiom. Follow the standard Dispose idiom I've described. That will make life easier for you, for the users of your class, and for those who create derived classes from your types.

 
   

转载于:https://www.cnblogs.com/WuCountry/archive/2007/03/07/667320.html

相关文章:

  • OutLook解析邮件头的问题
  • 听了好伤心!我真的伤心!`伤透了心!``
  • 用编程方式给iis里增加mime类型
  • 自定义制作 自动定时更换图片的桌面背景 html页面
  • 按比例缩放图片
  • Varchar与char的区别
  • 各种Excel VBA的命令
  • 网络游戏 聊天 下载 视频 股票等端口
  • [新闻]微软Silverlight着眼网络设计未来
  • 小小设置 让你的WinRAR用起来更顺手
  • C++ 类访问控制public/private/protected探讨
  • Just Thinking...
  • 什么是Page Rank及其由来 – Google 的民主表决式网页排名技术
  • 利用BCP导入数据到SQL中
  • Windows Mobile 5.0模拟器用ActiveSync来使用PC机的网络
  • Android系统模拟器绘制实现概述
  • axios 和 cookie 的那些事
  • Docker容器管理
  • es6--symbol
  • exports和module.exports
  • go语言学习初探(一)
  • javascript从右向左截取指定位数字符的3种方法
  • JavaScript函数式编程(一)
  • js对象的深浅拷贝
  • Node项目之评分系统(二)- 数据库设计
  • Transformer-XL: Unleashing the Potential of Attention Models
  • tweak 支持第三方库
  • 跨域
  • 如何使用 JavaScript 解析 URL
  • 硬币翻转问题,区间操作
  • 7行Python代码的人脸识别
  • #QT(TCP网络编程-服务端)
  • #ubuntu# #git# repository git config --global --add safe.directory
  • $(function(){})与(function($){....})(jQuery)的区别
  • (2)Java 简介
  • (echarts)echarts使用时重新加载数据之前的数据存留在图上的问题
  • (Redis使用系列) Springboot 在redis中使用BloomFilter布隆过滤器机制 六
  • (附源码)springboot优课在线教学系统 毕业设计 081251
  • (附源码)小程序儿童艺术培训机构教育管理小程序 毕业设计 201740
  • (每日持续更新)信息系统项目管理(第四版)(高级项目管理)考试重点整理 第13章 项目资源管理(七)
  • (十三)Java springcloud B2B2C o2o多用户商城 springcloud架构 - SSO单点登录之OAuth2.0 根据token获取用户信息(4)...
  • (一)使用IDEA创建Maven项目和Maven使用入门(配图详解)
  • (转)机器学习的数学基础(1)--Dirichlet分布
  • **python多态
  • *setTimeout实现text输入在用户停顿时才调用事件!*
  • . Flume面试题
  • .gitattributes 文件
  • .NET 使用 ILMerge 合并多个程序集,避免引入额外的依赖
  • .NET/MSBuild 中的发布路径在哪里呢?如何在扩展编译的时候修改发布路径中的文件呢?
  • .net使用excel的cells对象没有value方法——学习.net的Excel工作表问题
  • .sdf和.msp文件读取
  • @param注解什么意思_9000字,通俗易懂的讲解下Java注解
  • @transactional 方法执行完再commit_当@Transactional遇到@CacheEvict,你的代码是不是有bug!...
  • []利用定点式具实现:文件读取,完成不同进制之间的
  • [2013][note]通过石墨烯调谐用于开关、传感的动态可重构Fano超——