当前位置: 首页 > news >正文

Chapter4.2:线性系统的根轨迹法

本系列属于胡寿松《自动控制原理》(第七版)教材的课后习题精选,需要完整版课后习题答案的同学,请自行查找,本系列基本包含了自动控制原理的知识点,搭配胡寿松《自动控制原理》(第七版)知识点提炼使用,可用于期末考试甚至考研复习。
《自动控制原理》(第七版)知识点提炼



第四章:线性系统的根轨迹法

Example 4.9

绘出下列多项式方程的根轨迹:
s 3 + 3 s 2 + ( K + 2 ) s + 10 K = 0 s^3+3s^2+(K+2)s+10K=0 s3+3s2+(K+2)s+10K=0
解:

由题设可得:
D ( s ) = s 3 + 3 s 2 + 2 s + K ( s + 10 ) = 0 D(s)=s^3+3s^2+2s+K(s+10)=0 D(s)=s3+3s2+2s+K(s+10)=0
等价表示:
1 + K ( s + 10 ) s ( s + 1 ) ( s + 2 ) = 0 ⇒ G ( s ) = K ( s + 10 ) s ( s + 1 ) ( s + 2 ) 1+\frac{K(s+10)}{s(s+1)(s+2)}=0\Rightarrow{G(s)}=\frac{K(s+10)}{s(s+1)(s+2)} 1+s(s+1)(s+2)K(s+10)=0G(s)=s(s+1)(s+2)K(s+10)

  1. 根轨迹的分支、起点和终点。

    由于 n = 3 , m = 1 , n − m = 2 n=3,m=1,n-m=2 n=3,m=1,nm=2,故根轨迹有三条分支,起点分别为: p 1 = 0 , p 2 = − 1 , p 2 = − 2 p_1=0,p_2=-1,p_2=-2 p1=0,p2=1,p2=2,终点分别为: z 1 = − 10 z_1=-10 z1=10和无穷远处.

  2. 实轴上的根轨迹。

    实轴上的根轨迹分布为: [ 0 , − 1 ] , [ − 2 , − 10 ] [0,-1],[-2,-10] [0,1],[2,10].

  3. 根轨迹的渐近线。
    σ a = − 1 − 2 + 10 3 − 1 = 3.5 , φ a = ± π 2 \sigma_a=\frac{-1-2+10}{3-1}=3.5,\varphi_a=±\frac{\pi}{2} σa=3112+10=3.5,φa=±2π

  4. 根轨迹的分离点。

    根轨迹的分离点坐标满足:
    1 d + 1 d + 1 + 1 d + 2 = 1 d + 10 \frac{1}{d}+\frac{1}{d+1}+\frac{1}{d+2}=\frac{1}{d+10} d1+d+11+d+21=d+101
    即:
    d 3 + 16.5 d 2 + 30 d + 10 = 0 d^3+16.5d^2+30d+10=0 d3+16.5d2+30d+10=0
    由试凑法解得:
    d ≈ − 0.433 d≈-0.433 d0.433

  5. 根轨迹与虚轴的交点。

    系统的闭环特征方程为:
    D ( s ) = s 3 + 3 s 2 + 2 s + K ( s + 10 ) = 0 D(s)=s^3+3s^2+2s+K(s+10)=0 D(s)=s3+3s2+2s+K(s+10)=0
    s = j ω s=j\omega s=,代入上式:
    ( j ω ) 3 + 3 ( j ω ) 2 + 2 ( j ω ) + K [ ( j ω ) + 10 ] = 0 (j\omega)^3+3(j\omega)^2+2(j\omega)+K[(j\omega)+10]=0 ()3+3()2+2()+K[()+10]=0
    即:
    { − 3 ω 2 + 10 K = 0 − ω 3 + 2 ω + K ω = 0 \begin{cases} &-3\omega^2+10K=0\\ &-\omega^3+2\omega+K\omega=0 \end{cases} {3ω2+10K=0ω3+2ω+Kω=0
    ω ≠ 0 \omega≠0 ω=0,解得:
    ω = ± 1.69 , K = 6 7 = 0.86 \omega=±1.69,K=\frac{6}{7}=0.86 ω=±1.69K=76=0.86
    则根轨迹与虚轴的交点坐标为: ± j 1.69 ±j1.69 ±j1.69.

  6. 概略根轨迹:
    1

Example 4.10

设系统开环传递函数如下,画出 b b b从零变到无穷时的根轨迹图。

  1. G ( s ) = 20 ( s + 4 ) ( s + b ) G(s)=\displaystyle\frac{20}{(s+4)(s+b)} G(s)=(s+4)(s+b)20
  2. G ( s ) = 30 ( s + b ) s ( s + 10 ) G(s)=\displaystyle\frac{30(s+b)}{s(s+10)} G(s)=s(s+10)30(s+b)

解:

  1. G ( s ) = 20 ( s + 4 ) ( s + b ) G(s)=\displaystyle\frac{20}{(s+4)(s+b)} G(s)=(s+4)(s+b)20.

    系统的特征多项式为:
    D ( s ) = ( s + 4 ) ( s + b ) + 20 = s 2 + 4 s + 20 + b ( s + 4 ) = 0 D(s)=(s+4)(s+b)+20=s^2+4s+20+b(s+4)=0 D(s)=(s+4)(s+b)+20=s2+4s+20+b(s+4)=0
    等价表示为:
    1 + b ( s + 4 ) s 2 + 4 s + 20 = 1 + G 1 ( s ) = 0 1+\frac{b(s+4)}{s^2+4s+20}=1+G_1(s)=0 1+s2+4s+20b(s+4)=1+G1(s)=0
    等效开环传递函数为:
    G 1 ( s ) = b ( s + 4 ) s 2 + 4 s + 20 = b ( s + 4 ) ( s + 2 + j 4 ) ( s + 2 − j 4 ) G_1(s)=\frac{b(s+4)}{s^2+4s+20}=\frac{b(s+4)}{(s+2+j4)(s+2-j4)} G1(s)=s2+4s+20b(s+4)=(s+2+j4)(s+2j4)b(s+4)

    1. 根轨迹的分支、起点和终点。

      由于 n = 2 , m = 1 , n − m = 1 n=2,m=1,n-m=1 n=2,m=1,nm=1,故根轨迹有两条分支,起点分别为: p 1 = − 2 − j 4 , p 2 = − 2 + j 4 p_1=-2-j4,p_2=-2+j4 p1=2j4,p2=2+j4,终点为: z 1 = − 4 z_1=-4 z1=4和无穷远处;

    2. 实轴上的根轨迹。

      实轴上的根轨迹分布区为: [ − 4 , − ∞ ) [-4,-\infty) [4,).

    3. 根轨迹的分离点。

      根轨迹的分离点坐标满足:
      1 d + 2 + j 4 + 1 d + 2 − j 4 = 1 d + 4 \frac{1}{d+2+j4}+\frac{1}{d+2-j4}=\frac{1}{d+4} d+2+j41+d+2j41=d+41
      即: d 2 + 8 d − 4 = 0 d^2+8d-4=0 d2+8d4=0,解得:
      d 1 = − 8.47 , d 2 = 0.47 ( 舍去 ) d_1=-8.47,d_2=0.47(舍去) d1=8.47,d2=0.47(舍去)

    4. 根轨迹的起始角。
      θ p 1 = 180 ° + φ z 1 p 1 − θ p 2 p 1 = 180 ° + arctan ⁡ 2 − 90 ° = 153.43 ° θ p 2 = − 153.43 ° \begin{aligned} &\theta_{p_1}=180°+\varphi_{z_1p_1}-\theta_{p_2p_1}=180°+\arctan2-90°=153.43°\\ &\theta_{p_2}=-153.43° \end{aligned} θp1=180°+φz1p1θp2p1=180°+arctan290°=153.43°θp2=153.43°

    5. 概略根轨迹:
      2

    6. 分离点 d = − 8.47 d=-8.47 d=8.47处的 b b b

      由模值条件:
      b = ∏ i = 1 2 ∣ d − p i ∣ ∣ d − z ∣ = 6.4 7 2 + 4 2 4.47 = 12.94 b=\frac{\displaystyle\prod_{i=1}^2|d-p_i|}{|d-z|}=\frac{6.47^2+4^2}{4.47}=12.94 b=dzi=12dpi=4.476.472+42=12.94

  2. G ( s ) = 30 ( s + b ) s ( s + 10 ) G(s)=\displaystyle\frac{30(s+b)}{s(s+10)} G(s)=s(s+10)30(s+b).

    系统特征多项式为:
    D ( s ) = s ( s + 10 ) + 30 ( s + b ) = s 2 + 40 s + 30 b = 0 D(s)=s(s+10)+30(s+b)=s^2+40s+30b=0 D(s)=s(s+10)+30(s+b)=s2+40s+30b=0
    等价表示为:
    1 + 30 b s 2 + 40 s = 1 + G 2 ( s ) = 0 1+\frac{30b}{s^2+40s}=1+G_2(s)=0 1+s2+40s30b=1+G2(s)=0
    等效开环传递函数为:
    G 2 ( s ) = 30 b s 2 + 40 s = 30 b s ( s + 40 ) G_2(s)=\frac{30b}{s^2+40s}=\frac{30b}{s(s+40)} G2(s)=s2+40s30b=s(s+40)30b

    1. 根轨迹的分支、起点和终点。

      由于 n = 2 , m = 0 , n − m = 2 n=2,m=0,n-m=2 n=2,m=0,nm=2,故根轨迹有两条分支,起点分别为: p 1 = 0 , p 2 = − 40 p_1=0,p_2=-40 p1=0,p2=40,终点都是无穷远处;

    2. 实轴上的根轨迹。

      实轴上的根轨迹分布区为: [ 0 , − 40 ] [0,-40] [0,40].

    3. 根轨迹的分离点。

      根轨迹的分离点坐标满足:
      1 d + 1 d + 40 = 0 \frac{1}{d}+\frac{1}{d+40}=0 d1+d+401=0
      即: d 2 + 40 = 0 d^2+40=0 d2+40=0,解得: d = − 20 d=-20 d=20.

    4. 概略根轨迹
      3

    5. 分离点 d = − 20 d=-20 d=20处的 b b b

      由模值条件可得:
      30 b = ∏ i = 1 2 ∣ d − p i ∣ = 400 ⇒ b = 13.33 30b=\prod_{i=1}^2|d-p_i|=400\Rightarrow{b=13.33} 30b=i=12dpi=400b=13.33

Example 4.11

设控制系统的结构图如下图所示,概略绘制其根轨迹图。
4
解:

该系统的开环传递函数为:
G ( s ) = K ∗ ( s + 1 ) 2 ( s + 2 ) 2 G(s)=\frac{K^*(s+1)^2}{(s+2)^2} G(s)=(s+2)2K(s+1)2

  1. 根轨迹的分支、起点和终点。

    由于 n = 2 , m = 2 , n − m = 0 n=2,m=2,n-m=0 n=2,m=2,nm=0,故根轨迹有两条分支,起点分别为: p 1 = − 2 , p 2 = − 2 p_1=-2,p_2=-2 p1=2,p2=2,终点分别为: z 1 = − 1 , z 2 = − 1 z_1=-1,z_2=-1 z1=1,z2=1.

  2. 实轴上的根轨迹。

    实轴上的根轨迹分布区为全部实轴;

  3. 概略根轨迹
    5

Example 4.12

设单位反馈控制系统的开环传递函数为
G ( s ) = K ∗ ( 1 − s ) s ( s + 2 ) G(s)=\frac{K^*(1-s)}{s(s+2)} G(s)=s(s+2)K(1s)
绘制其根轨迹图,求出使系统产生重实根和纯虚根的 K ∗ K^* K值.

解:

系统的开环传递函数为:
G ( s ) = K ∗ ( 1 − s ) s ( s + 2 ) G(s)=\frac{K^*(1-s)}{s(s+2)} G(s)=s(s+2)K(1s)
由系统的开环传递函数可知,该系统的根轨迹为零度根轨迹;

  1. 根轨迹的分支、起点和终点。

    由于 n = 2 , m = 1 , n − m = 1 n=2,m=1,n-m=1 n=2,m=1,nm=1,故根轨迹有两条分支,起点分别为: p 1 = 0 , p 2 = − 2 p_1=0,p_2=-2 p1=0,p2=2,终点分别为: z 1 = 1 z_1=1 z1=1和无穷远处.

  2. 实轴上的根轨迹。

    实轴上的根轨迹分布区为: [ − 2 , 0 ] , [ 1 , ∞ ) [-2,0],[1,\infty) [2,0],[1,).

  3. 根轨迹的分离点。

    根轨迹的分离点坐标满足:
    1 d + 1 d + 2 = 1 d − 1 \frac{1}{d}+\frac{1}{d+2}=\frac{1}{d-1} d1+d+21=d11
    即: d 2 − 2 d − 2 = 0 d^2-2d-2=0 d22d2=0,解得:
    d 1 = 1 − 3 = − 0.732 , d 2 = 1 + 3 = 2.732 d_1=1-\sqrt{3}=-0.732,d_2=1+\sqrt{3}=2.732 d1=13 =0.732,d2=1+3 =2.732
    根据幅值条件可得分离点处的根轨迹增益为:
    K 1 ∗ = ∣ d 1 ( d 1 + 2 ) 1 − d 1 ∣ = 0.732 × ( 2 − 0.732 ) 1.732 = 0.536 K 2 ∗ = ∣ d 2 ( d 2 + 2 ) 1 − d 2 ∣ = 2.732 × ( 2 + 2.732 ) 1.732 = 7.464 \begin{aligned} &K_1^*=\left|\frac{d_1(d_1+2)}{1-d_1}\right|=\frac{0.732\times(2-0.732)}{1.732}=0.536\\ &K_2^*=\left|\frac{d_2(d_2+2)}{1-d_2}\right|=\frac{2.732\times(2+2.732)}{1.732}=7.464 \end{aligned} K1= 1d1d1(d1+2) =1.7320.732×(20.732)=0.536K2= 1d2d2(d2+2) =1.7322.732×(2+2.732)=7.464

  4. 根轨迹与虚轴的交点。

    系统的闭环特征方程式为:
    D ( s ) = s 2 + 2 s − K ∗ s + K ∗ = 0 D(s)=s^2+2s-K^*s+K^*=0 D(s)=s2+2sKs+K=0
    s = j ω s=j\omega s=,代入上式,可得:
    ( j ω ) 2 + 2 ( j ω ) − K ∗ ( j ω ) + K ∗ = 0 (j\omega)^2+2(j\omega)-K^*(j\omega)+K^*=0 ()2+2()K()+K=0
    即:
    { − ω 2 + K ∗ = 0 2 ω − K ∗ ω = 0 \begin{cases} &-\omega^2+K^*=0\\ &2\omega-K^*\omega=0 \end{cases} {ω2+K=02ωKω=0
    ω ≠ 0 \omega≠0 ω=0,解得:
    ω = ± 2 , K ∗ = 2 \omega=±\sqrt{2},K^*=2 ω=±2 K=2

  5. 零度根轨迹
    6
    实际上,系统根轨迹的复数部分是以零点 z = 1 z=1 z=1为圆心、以零点到分离点 d 1 d_1 d1 d 2 d_2 d2的距离 1.732 1.732 1.732为半径的圆;

    系统产生的重实根对应于根轨迹上的分离点,系统产生的纯虚根对应于根轨迹与虚轴的交点;因此,使系统产生重实根的 K ∗ K^* K值为0.536和7.464,使系统产生纯虚根的 K ∗ K^* K值为2.

Example 4.13

设控制系统开环传递函数为
G ( s ) = K ∗ ( s + 1 ) s 2 ( s + 2 ) ( s + 4 ) G(s)=\frac{K^*(s+1)}{s^2(s+2)(s+4)} G(s)=s2(s+2)(s+4)K(s+1)
分别画出正反馈和负反馈系统的根轨迹图,并指出它们的稳定情况有何不同.

解:

【负反馈系统根轨迹】

  1. 根轨迹的分支、起点和终点。

    由于 n = 4 , m = 1 , n − m = 3 n=4,m=1,n-m=3 n=4,m=1,nm=3,故根轨迹有四条分支,起点分别为: p 1 , 2 = 0 , p 3 = − 2 , p 4 = − 4 p_{1,2}=0,p_3=-2,p_4=-4 p1,2=0,p3=2,p4=4,终点分别为: z 1 = − 1 z_1=-1 z1=1和无穷远处.

  2. 实轴上的根轨迹。

    实轴上的根轨迹分布区为: [ − 4 , − ∞ ) , [ − 2 , − 1 ] [-4,-\infty),[-2,-1] [4,),[2,1].

  3. 根轨迹的渐近线。
    σ a = − 2 − 4 + 1 4 − 1 = − 1.67 , φ a = ± π 3 , π \sigma_a=\frac{-2-4+1}{4-1}=-1.67,\varphi_a=±\frac{\pi}{3},\pi σa=4124+1=1.67,φa=±3π,π

  4. 根轨迹与虚轴的交点。

    系统的闭环特征方程为:
    D ( s ) = s 2 ( s + 2 ) ( s + 4 ) + K ∗ ( s + 1 ) = s 4 + 6 s 3 + 8 s 2 + K ∗ s + K ∗ = 0 D(s)=s^2(s+2)(s+4)+K^*(s+1)=s^4+6s^3+8s^2+K^*s+K^*=0 D(s)=s2(s+2)(s+4)+K(s+1)=s4+6s3+8s2+Ks+K=0
    s = j ω s=j\omega s=,代入上式可得:
    ( j ω ) 4 + 6 ( j ω ) 3 + 8 ( j ω ) 2 + K ∗ ( j ω ) + K ∗ = 0 (j\omega)^4+6(j\omega)^3+8(j\omega)^2+K^*(j\omega)+K^*=0 ()4+6()3+8()2+K()+K=0
    即:
    { ω 4 − 8 ω 2 + K ∗ = 0 − 6 ω 3 + K ∗ ω = 0 \begin{cases} &\omega^4-8\omega^2+K^*=0\\ &-6\omega^3+K^*\omega=0 \end{cases} {ω48ω2+K=06ω3+Kω=0
    ω ≠ 0 \omega≠0 ω=0,可解得:
    ω = ± 2 , K ∗ = 12 \omega=±\sqrt{2},K^*=12 ω=±2 ,K=12

  5. 概略根轨迹
    7
    由根轨迹图可知,当 0 < K ∗ < 12 0<K^*<12 0<K<12时,系统稳定.

【正反馈系统根轨迹】

  1. 根轨迹的分支、起点和终点。

    由于 n = 4 , m = 1 , n − m = 3 n=4,m=1,n-m=3 n=4,m=1,nm=3,故根轨迹有四条分支,起点分别为: p 1 , 2 = 0 , p 3 = − 2 , p 4 = − 4 p_{1,2}=0,p_3=-2,p_4=-4 p1,2=0,p3=2,p4=4,终点分别为: z 1 = − 1 z_1=-1 z1=1和无穷远处.

  2. 实轴上的根轨迹。

    实轴上的根轨迹分布区为: [ − 4 , − 2 ] , [ − 1 , ∞ ) [-4,-2],[-1,\infty) [4,2],[1,).

  3. 根轨迹的渐近线。
    σ a = − 2 − 4 + 1 4 − 1 = − 1.67 , φ a = ± 2 π 3 , 0 \sigma_a=\frac{-2-4+1}{4-1}=-1.67,\varphi_a=±\frac{2\pi}{3},0 σa=4124+1=1.67,φa=±32π,0

  4. 根轨迹的分离点。

    根轨迹的分离点坐标满足:
    2 d + 1 d + 2 + 1 d + 4 = 1 d + 1 \frac{2}{d}+\frac{1}{d+2}+\frac{1}{d+4}=\frac{1}{d+1} d2+d+21+d+41=d+11
    由试凑法可得: d ≈ − 3.08 d≈-3.08 d3.08.

  5. 概略根轨迹
    8
    由根轨迹图可知,当 K ∗ > 0 K^*>0 K>0时,系统恒不稳定.

Example 4.14

激光操作控制系统如下图所示,可用于外科手术时在人体内钻孔。
9
手术要求激光操作系统必须有高度精确的位置和速度响应,因此直流电动机的参数选为:激磁时间常数 T 1 = 0.1 s T_1=0.1s T1=0.1s,电机和载荷组合的机电时间常数 T 2 = 0.2 s T_2=0.2s T2=0.2s,要求调整放大器增益 K K K,使系统在斜坡输入 r ( t ) = A t ( A = 1 m m / s ) r(t)=At(A=1mm/s) r(t)=At(A=1mm/s)时,系统稳态误差 e s s ( ∞ ) ≤ 0.1 m m e_{ss}(\infty)≤0.1mm ess()0.1mm

解:

系统开环传递函数为:
K G 1 ( s ) = K s ( T 1 s + 1 ) ( T 2 s + 1 ) KG_1(s)=\frac{K}{s(T_1s+1)(T_2s+1)} KG1(s)=s(T1s+1)(T2s+1)K
系统为Ⅰ型系统,静态速度误差系数为:
K v = K K_v=K Kv=K
闭环传递函数为:
Φ ( s ) = K s ( T 1 s + 1 ) ( T 2 s + 1 ) + K = 50 K s 3 + 15 s 2 + 50 s + 50 K \Phi(s)=\frac{K}{s(T_1s+1)(T_2s+1)+K}=\frac{50K}{s^3+15s^2+50s+50K} Φ(s)=s(T1s+1)(T2s+1)+KK=s3+15s2+50s+50K50K
选取 K K K,先保证系统稳定性,劳斯表如下:

s 3 s^3 s3 1 1 1 50 50 50
s 2 s^2 s2 15 15 15 50 K 50K 50K
s 1 s^1 s1 750 − 50 K 15 \displaystyle\frac{750-50K}{15} 1575050K 0 0 0
s 0 s^0 s0 50 K 50K 50K

为确保稳定,应有: 0 < K < 15 0<K<15 0<K<15.

根据系统在斜坡作用下的稳态误差要求,当 r ( t ) = A t ( A = 1 m m / s ) , R ( s ) = A s 2 r(t)=At(A=1mm/s),R(s)=\displaystyle\frac{A}{s^2} r(t)=At(A=1mm/s),R(s)=s2A时,稳态误差为:
e s s ( ∞ ) = A K v = 1 K ≤ 0.1 e_{ss}(\infty)=\frac{A}{K_v}=\frac{1}{K}≤0.1 ess()=KvA=K10.1
应取 K ≥ 10 K≥10 K10.

现取 K = 10 K=10 K=10可同时满足系统稳定性及稳态误差要求。

K K K从0到 ∞ \infty 绘制其根轨迹,如下图所示,
10

  • 渐近线:
    σ a = − 5 − 10 3 = − 5 , φ a = ± 60 ° , − 180 ° \sigma_a=\frac{-5-10}{3}=-5,\varphi_a=±60°,-180° σa=3510=5,φa=±60°180°

  • 分离点:
    1 d + 1 d + 5 + 1 d + 10 = 0 ⇒ d = − 2.11 \frac{1}{d}+\frac{1}{d+5}+\frac{1}{d+10}=0\Rightarrow{d=-2.11} d1+d+51+d+101=0d=2.11

K a = 10 K_a=10 Ka=10时,系统的根轨迹增益:
K ∗ = K a T 1 T 2 = 500 K^*=\frac{K_a}{T_1T_2}=500 K=T1T2Ka=500
根据模值条件,确定实轴上 [ − 10 , − ∞ ) [-10,-\infty) [10,)区间内的闭环极点 s 3 s_3 s3,因为:
∣ s 3 ∣ ⋅ ∣ s 3 − 5 ∣ ⋅ ∣ s 3 − 10 ∣ = 500 |s_3|·|s_3-5|·|s_3-10|=500 s3s35∣s310∣=500
求得: s 3 = − 13.98 s_3=-13.98 s3=13.98,用 s + 13.98 s+13.98 s+13.98除闭环特征多项式 s 3 + 15 s 2 + 50 s + 500 s^3+15s^2+50s+500 s3+15s2+50s+500,可得: s 2 + 1.02 s + 35.74 s^2+1.02s+35.74 s2+1.02s+35.74

令其等于0,可得闭环主导极点:
s 1 , 2 = − 0.51 ± j 5.96 s_{1,2}=-0.51±j5.96 s1,2=0.51±j5.96
激光操作系统的动态性能主要取决于主导极点;

由主导极点的数值可知:
σ = ζ ω = 0.51 , ω d = ω n 1 − ζ 2 = 5.96 \sigma=\zeta\omega=0.51,\omega_d=\omega_n\sqrt{1-\zeta^2}=5.96 σ=ζω=0.51,ωd=ωn1ζ2 =5.96
因而:
β = arctan ⁡ ω d σ = 85.1 ° , ζ = cos ⁡ β = 0.085 \beta=\arctan\frac{\omega_d}{\sigma}=85.1°,\zeta=\cos\beta=0.085 β=arctanσωd=85.1°ζ=cosβ=0.085
在单位阶跃输入下,激光操作系统的动态性能为:
σ % = e − π ζ / 1 − ζ 2 × 100 % = 76.4 % , t s = 4.4 σ = 8.63 s ( Δ = 2 % ) \sigma\%=e^{-\pi\zeta/\sqrt{1-\zeta^2}}\times100\%=76.4\%,t_s=\frac{4.4}{\sigma}=8.63s(\Delta=2\%) σ%=eπζ/1ζ2 ×100%=76.4%,ts=σ4.4=8.63s(Δ=2%)
11

相关文章:

  • kvm快照和克隆
  • 【元胞自动机】基于元胞自动机模拟晶体生长附matlab代码
  • Unity-- Gfx.WaitForPresentOnGfxThread占用CPU过高导致帧率低
  • opencv--GrabCut
  • IT计算机企业如何使用科技虚拟员工规避人工操作风险
  • 【Android】-- 数据存储(一)(共享参数SharePreferences、数据库SQLite)
  • 文件包含漏洞——实例
  • Nacos详解
  • 洛谷刷题(普及-):谁拿了最多奖学金、ISBN 号码、开心的金明、数列、多项式输出
  • SpringMVC(二)
  • 操作系统第九讲——线程的实现方式和多线程模型
  • 爬虫——第一次笔记 urllib的基本使用 urllib一个类型,六个方法 urllib下载 urllib请求对象的定制
  • 神经网络电子书,神经网络入门书
  • 面试说:聊聊JavaScript中的数据类型
  • 深入理解计算机系统——第三章 Machine-Level Representation of Programs
  • ES6指北【2】—— 箭头函数
  • 【每日笔记】【Go学习笔记】2019-01-10 codis proxy处理流程
  • 【跃迁之路】【585天】程序员高效学习方法论探索系列(实验阶段342-2018.09.13)...
  • CSS3 变换
  • Making An Indicator With Pure CSS
  • opencv python Meanshift 和 Camshift
  • Python_OOP
  • ReactNativeweexDeviceOne对比
  • Travix是如何部署应用程序到Kubernetes上的
  • Vue 动态创建 component
  • 百度小程序遇到的问题
  • 彻底搞懂浏览器Event-loop
  • 基于Android乐音识别(2)
  • 使用SAX解析XML
  • 算法---两个栈实现一个队列
  • 为物联网而生:高性能时间序列数据库HiTSDB商业化首发!
  • 无服务器化是企业 IT 架构的未来吗?
  • 原生js练习题---第五课
  • ​ssh-keyscan命令--Linux命令应用大词典729个命令解读
  • ​决定德拉瓦州地区版图的关键历史事件
  • ​马来语翻译中文去哪比较好?
  • ​如何在iOS手机上查看应用日志
  • # MySQL server 层和存储引擎层是怎么交互数据的?
  • (附源码)ssm高校社团管理系统 毕业设计 234162
  • (接口封装)
  • (经验分享)作为一名普通本科计算机专业学生,我大学四年到底走了多少弯路
  • (六)软件测试分工
  • (一)基于IDEA的JAVA基础12
  • .bashrc在哪里,alias妙用
  • .Net Attribute详解(上)-Attribute本质以及一个简单示例
  • .NET Core/Framework 创建委托以大幅度提高反射调用的性能
  • .Net 知识杂记
  • .pop ----remove 删除
  • /deep/和 >>>以及 ::v-deep 三者的区别
  • :如何用SQL脚本保存存储过程返回的结果集
  • @Autowired多个相同类型bean装配问题
  • [c#基础]DataTable的Select方法
  • [ccc3.0][数字钥匙] UWB配置和使用(二)
  • [ERROR ImagePull]: failed to pull image k8s.gcr.io/kube-controller-manager失败
  • [EULAR文摘] 脊柱放射学持续进展是否显著影响关节功能