当前位置: 首页 > news >正文

多处理系统结构

目录

统一内存访问(UMA)多处理器系统结构

优点

缺点

应用场景

UMA 结构的架构示例

解决方案和改进

非统一内存访问(NUMA)多处理系统结构

概述

NUMA的优点

NUMA的缺点

NUMA系统的工作原理

NUMA优化策略

结论


        现代计算机系统越来越多地采用多处理器结构,这带来了性能的提升和更高的计算能力。在这种情况下,统一内存访问(UMA)和多处理器系统以及非统一内存访问(NUMA)和多处理器系统成为两种主要的架构设计。不希望结构各有利弊,适用于不同的应用场景。

统一内存访问(UMA)多处理器系统结构

概述

        在**统一内存访问(Uniform Memory Access, UMA)**结构中,所有处理器共享同一物理内存地址空间,并且访问内存的延迟是相同的。这种结构通常用于对称多处理(Symmetric Multiprocessing, SMP)系统,其中每个处理器执行相同的任务,包括操作系统功能和用户进程。UMA 结构的优点是实现了内存的统一管理,简化了编程模型,所有处理器都可以平等地访问内存中的数据。

优点

  1. 统一内存管理:UMA 结构下,所有处理器共享相同的物理内存地址空间,简化了内存管理和编程模型。
  2. 简化编程:由于所有处理器的内存访问延迟相同,程序设计和调试变得更加简单,不需要考虑不均匀的内存访问延迟。
  3. 数据共享便利:处理器可以平等地访问内存中的数据,便于数据共享和通信,提高了内存的利用率。

缺点

  1. 扩展性受限:随着处理器数量的增加,总线长度或容量也会增加,从而导致系统性能和扩展性下降。总线成为一个瓶颈,限制了系统的可扩展性。
  2. 总线争用:多个处理器同时访问内存时,总线争用可能导致系统性能下降。这在高并发情况下尤为明显。
  3. 存储器瓶颈:所有处理器共享同一内存,处理器之间的内存访问竞争可能导致存储器成为系统瓶颈,影响整体性能。

应用场景

        UMA 结构适用于中小规模的多处理器系统,通常用于对称多处理(SMP)系统。这些系统中,处理器数量相对较少,不会出现严重的总线争用和存储器瓶颈问题。例如:

  1. 服务器和工作站:中小规模的服务器和高性能工作站中,SMP 系统可以提供高效的计算能力和数据处理能力。
  2. 多任务处理:在需要进行多任务处理的环境中,SMP 系统可以有效利用多个处理器的并行计算能力,提高系统性能。
  3. 科学计算和工程仿真:一些科学计算和工程仿真应用中,SMP 系统可以提供强大的计算能力,满足复杂计算需求。

UMA 结构的架构示例

以下是 UMA 结构的典型架构示意图:

          +------------------------+|        处理器 1        |+------------------------+|            |+------------------------+|        处理器 2        |+------------------------+|            |+------------------------+|        处理器 3        |+------------------------+|            |+------------------------+|        处理器 4        |+------------------------+|            |+------------------------+|         内存         |+------------------------+

        在此架构中,所有处理器通过共享的总线访问统一的内存地址空间。每个处理器可以平等地访问内存中的数据,提供了一致的内存访问延迟。

解决方案和改进

为了克服 UMA 结构的扩展性和性能瓶颈问题,可以采取以下改进措施:

  1. 增加缓存层级:在处理器和内存之间增加多级缓存(L1、L2、L3),以减少直接访问内存的频率,提高数据访问速度。
  2. 总线优化:采用更高带宽的总线技术或多总线架构,缓解总线争用问题,提高系统性能。
  3. 分布式共享内存:在大规模多处理器系统中,可以采用非一致内存访问(NUMA)架构,将内存分布到多个节点,每个节点有自己的本地内存和处理器,通过互连网络进行通信,减少远程内存访问延迟。

非统一内存访问(NUMA)多处理系统结构

概述

        非统一内存访问(NUMA)结构是一种多处理系统架构,允许系统中的处理器和内存资源以节点为单位进行扩展。每个节点都有自己的处理器和本地内存,这种设计使得系统在增加处理器和内存时能够更加灵活地扩展规模。NUMA结构的优势在于能够更好地应对内存访问性能挑战,实现更高的性能提升。

NUMA的优点
  1. 低延迟的本地内存访问

    • 在NUMA系统中,处理器访问本地内存的延迟较低。这种局部性原则有助于减少内存访问延迟,提高处理器之间的协同性能。
  2. 良好的扩展性

    • NUMA结构允许系统通过增加更多的节点扩展处理器和内存资源,实现系统的线性扩展或者接近线性的性能提升。
  3. 负载均衡

    • 通过对任务和内存的分布式管理,NUMA结构能够实现负载均衡,从而提高整体系统性能。每个节点独立处理任务,减少了单一节点的资源短缺问题,确保资源得到充分利用。
  4. 资源充分利用

    • NUMA结构可以将资源分配到各个节点,避免了单一节点的资源瓶颈问题,提高了内存和处理器资源的利用率。

NUMA的缺点
  1. NUMA感知需求

    • NUMA结构要求操作系统和应用程序具备NUMA感知能力,以充分发挥其优势。如果应用程序不是为NUMA结构优化的,则可能无法达到最佳性能。
  2. 内存碎片化问题

    • 在NUMA结构中,内存资源可能分布在不同节点上,导致内存碎片化问题。尤其在处理大规模数据时,可能会影响系统性能。
  3. 编程复杂性

    • 对于开发人员来说,编写NUMA感知的应用程序可能比较复杂。需要特别注意内存和任务的分配,以最大化利用NUMA的性能优势。

NUMA系统的工作原理

        在NUMA系统中,内存和处理器被组织成多个节点,每个节点都有自己的局部内存。各节点之间通过高速互联进行通信。以下是NUMA系统的工作方式:

  • 每个处理器优先访问其本地内存,以确保低延迟。
  • 当处理器需要访问其他节点的内存时,会通过互联总线进行访问,这种访问的延迟较高。
  • 操作系统负责将任务和内存分配到合适的节点,以优化性能。

NUMA优化策略
  1. 任务和内存绑定(Affinity)

    • 通过将任务和内存绑定到同一节点,可以减少远程内存访问,降低延迟,提升性能。
  2. 负载均衡

    • 操作系统需要进行智能的负载均衡,将任务均匀分布到各个节点,避免某个节点过载。
  3. 内存分配策略

    • 优化内存分配策略,根据任务的内存访问模式,将内存分配到最合适的节点。

结论

        UMA和多处理器系统结构以及NUMA和多处理器系统结构各有利弊。UMA结构具有统一内存管理的优点,但可能受到共享总线的影响。NUMA结构具有更好的可扩展性和内存访问性能,但要求操作系统和应用程序的NUMA感知能力。在实际应用中,需要根据处理器数量、性能需求、数据一致性要求等因素选择合适的内存架构。

相关文章:

  • 18张Python数据科学速查表.png
  • 教你python自动识别图文验证码的解决方案!
  • 第二章习题
  • 基于Redis提高查询性能(保持数据一致性)
  • YOLOV8 目标检测:训练自定义数据集
  • 短视频热恋进行时:成都柏煜文化传媒有限公司
  • React是什么?
  • 从治理到“智”理,打造新一代金融数据体系
  • 通义千问调用笔记
  • 使用kettle做的数据同步案例
  • C/C++ string模拟实现
  • MYSQL execute command denied to user ‘‘@‘%‘ for routine
  • 腾讯《地下城与勇士:起源》手游在部分安卓平台停止更新
  • 微信小程序-上拉加载和下拉刷新
  • C类IP介绍
  • [数据结构]链表的实现在PHP中
  • 《用数据讲故事》作者Cole N. Knaflic:消除一切无效的图表
  • Consul Config 使用Git做版本控制的实现
  • CSS进阶篇--用CSS开启硬件加速来提高网站性能
  • es6(二):字符串的扩展
  • ES学习笔记(10)--ES6中的函数和数组补漏
  • Linux中的硬链接与软链接
  • open-falcon 开发笔记(一):从零开始搭建虚拟服务器和监测环境
  • 翻译--Thinking in React
  • 高程读书笔记 第六章 面向对象程序设计
  • 解决jsp引用其他项目时出现的 cannot be resolved to a type错误
  • 漂亮刷新控件-iOS
  • 移动互联网+智能运营体系搭建=你家有金矿啊!
  • 3月7日云栖精选夜读 | RSA 2019安全大会:企业资产管理成行业新风向标,云上安全占绝对优势 ...
  • ​ubuntu下安装kvm虚拟机
  • ​比特币大跌的 2 个原因
  • # 手柄编程_北通阿修罗3动手评:一款兼具功能、操控性的电竞手柄
  • $var=htmlencode(“‘);alert(‘2“); 的个人理解
  • (arch)linux 转换文件编码格式
  • (Matlab)使用竞争神经网络实现数据聚类
  • (Qt) 默认QtWidget应用包含什么?
  • (Redis使用系列) SpringBoot中Redis的RedisConfig 二
  • (二开)Flink 修改源码拓展 SQL 语法
  • (附源码)计算机毕业设计ssm高校《大学语文》课程作业在线管理系统
  • (附源码)计算机毕业设计SSM教师教学质量评价系统
  • (剑指Offer)面试题34:丑数
  • (三)mysql_MYSQL(三)
  • (深度全面解析)ChatGPT的重大更新给创业者带来了哪些红利机会
  • (算法设计与分析)第一章算法概述-习题
  • (图文详解)小程序AppID申请以及在Hbuilderx中运行
  • (循环依赖问题)学习spring的第九天
  • (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly DetectionRecommender Systems...
  • (原創) 人會胖會瘦,都是自我要求的結果 (日記)
  • (原創) 如何安裝Linux版本的Quartus II? (SOC) (Quartus II) (Linux) (RedHat) (VirtualBox)
  • (转)如何上传第三方jar包至Maven私服让maven项目可以使用第三方jar包
  • (自适应手机端)行业协会机构网站模板
  • ****Linux下Mysql的安装和配置
  • .chm格式文件如何阅读
  • .NET C#版本和.NET版本以及VS版本的对应关系
  • .Net 垃圾回收机制原理(二)