当前位置: 首页 > news >正文

数据清洗-缺失值填充-K-NN算法(K-Nearest Neighbors, K-NN算法)

目录

  • 一、安装所需的python包
  • 二、采用K-NN算法进行缺失值填充
    • 2.1可直接运行代码
    • 2.2以某个缺失值数据进行实战
      • 2.2.1代码运行过程截屏:
      • 2.2.2填充后的数据截屏:
  • 三、K 近邻算法 (K-Nearest Neighbors, KNN) 介绍
    • 3.1 K 近邻算法定义
    • 3.2 K 近邻算法的基本思想
    • 3.3 K 近邻算法的步骤
    • 3.4 K 近邻算法的距离度量
    • 3.5 K 近邻算法的优缺点
      • 3.5.1 优点
      • 3.5.2 缺点
    • 3.6 K 近邻算法的应用场景
    • 3.7 K 近邻算法的改进方法

感觉大家对原理性的东西不太感兴趣,那我就直接举例提供代码,以及详细的注释,大家自己对照改代码应用于你自己建立的模型吧。

这些代码全部是我自己做数模竞赛时候自己用的代码。可以直接运行,记得修改文件路径。

一、安装所需的python包

pip install pandas scikit-learn scipy numpy joblib

二、采用K-NN算法进行缺失值填充

注意代码需要把自己的数据文件格式转换为CSV文件,并且把路径修改为自己文件所在的路径,不会转换的参考我此教程文件格式转换:EXCEL和CSV文件格式互相转换。

我知道大家对原理性的东西不感兴趣,我把他的原理介绍放在文末,需要写论文的同学自己拿去用,记得修改,否则查重率过不去。

2.1可直接运行代码

"""
K-NN
1.**K-最近邻 (K-Nearest Neighbors, K-NN)**: K-NN是一种
基于实例的学习,或是局部而似和将所有计算推识到分类之
后的情性学习。整个训练数据集都存储在横型中。K-NN算
法比其他技术更适合用于多类目分类问题,如果你对填补缺
失值的速度和精度的平衡感兴趣,这是一个不错的选择。这个的效果比牛顿插值法差一点,,而那些训练模型的那个可能是因为数据量太少,效果差,这是我的一点经验。
"""import pandas as pd
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.impute import KNNImputer
from scipy.interpolate import interp1d
import numpy as np
import joblib# 读取数据,请将'缺失值填充.csv'替换为你的真实数据文件名
filename = '缺失值填充.csv'
data = pd.read_csv(filename, encoding='gbk')# 分离出有缺失值的列
missing_columns = data.columns[data.isnull().any()]# 使用KNN算法插补缺失值
imputer = KNNImputer(n_neighbors=3)
data_imputed = imputer.fit_transform(data)
data_imputed = pd.DataFrame(data_imputed, columns=data.columns)# 再次加载原始数据,将插补的值填充到相应的位置
original_data = pd.read_csv(filename, encoding='gbk')
missing_value_rows, missing_value_cols = np.where(original_data.isnull())# 替换缺失值为插补值
for row, col in zip(missing_value_rows, missing_value_cols):original_data.iloc[row, col] = data_imputed.iloc[row, col]# 输出处理后的数据
print(original_data)
original_data.to_csv('knn填充.csv', index=False)

2.2以某个缺失值数据进行实战

注意:数据量较少,由自己构建,均有规律,
如下图:
在这里插入图片描述

构造缺失值,如下图:
在这里插入图片描述

运行代码查看填充后的数据怎么样,
运行代码如下图+填充后的截图:

2.2.1代码运行过程截屏:

在这里插入图片描述

2.2.2填充后的数据截屏:

在这里插入图片描述

说明:估计是数据量太小,或者缺失值太多,导致填充的效果一般(对于这种规律的数据使用牛顿插值法倒是挺不错的,数据量大的,可以使用神经网络遗传算法来进行缺失值填充,下面我都会介绍),但是你在进行数模比赛时候,需要说明为什么你要选用knn算法,说明他的原理即可,不必纠结填充的数据是否正确,因为你本身也不知道数据的正确性。

接下来我将分享其他我参加数模时候常用的几种数据填充的代码,都是我自己调试跑通过的,大家直接复制粘贴使用。

三、K 近邻算法 (K-Nearest Neighbors, KNN) 介绍

3.1 K 近邻算法定义

K 近邻算法 (K-Nearest Neighbors, KNN) 是一种基本的监督学习算法,主要用于分类和回归问题。KNN 算法基于“相似的输入具有相似的输出”这一假设,通过计算给定数据点与训练数据集中其他点的距离,找出与其最接近的 K 个邻居,然后根据这些邻居的类别或数值进行预测。KNN 算法的核心思想是:相似的样本往往具有相似的输出。

3.2 K 近邻算法的基本思想

KNN 算法没有显式的学习过程,也不需要构建显式的模型,它属于 惰性学习算法。KNN 的主要步骤如下:

  1. 计算距离:对于一个需要分类或回归的数据点,计算它与训练集中每个数据点的距离。常用的距离度量方法包括欧几里得距离、曼哈顿距离和闵可夫斯基距离等。
  2. 选择最近的 K 个邻居:根据计算出的距离,选择距离最小的 K 个邻居。
  3. 投票或平均
    • 分类问题:在分类问题中,KNN 算法根据 K 个邻居中出现次数最多的类别进行投票决定待预测点的类别。
    • 回归问题:在回归问题中,KNN 算法通过 K 个邻居的数值平均来预测待预测点的值。

3.3 K 近邻算法的步骤

  1. 选择参数 K 的值:决定选择多少个邻居参与投票或计算平均值。
  2. 计算距离:对于待分类或回归的样本,计算它与训练数据集中每个样本的距离。
  3. 选择最近的 K 个邻居:根据距离对训练数据进行排序,选取距离最近的 K 个样本。
  4. 进行分类或回归
    • 分类:在 K 个邻居中,选择出现次数最多的类别作为预测结果。
    • 回归:在 K 个邻居中,取目标值的平均值作为预测结果。

3.4 K 近邻算法的距离度量

常用的距离度量方法有:

  • 欧几里得距离 (Euclidean Distance)
    d ( x , y ) = ∑ i = 1 n ( x i − y i ) 2 d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} d(x,y)=i=1n(xiyi)2

  • 曼哈顿距离 (Manhattan Distance)
    d ( x , y ) = ∑ i = 1 n ∣ x i − y i ∣ d(x, y) = \sum_{i=1}^n |x_i - y_i| d(x,y)=i=1nxiyi

  • 闵可夫斯基距离 (Minkowski Distance)
    d ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 / p d(x, y) = \left( \sum_{i=1}^n |x_i - y_i|^p \right)^{1/p} d(x,y)=(i=1nxiyip)1/p

3.5 K 近邻算法的优缺点

3.5.1 优点

  • 简单易懂:KNN 算法简单直观,易于理解和实现。
  • 无需训练:由于 KNN 是惰性学习算法,它不需要显式的训练过程,计算开销集中在预测阶段。
  • 可用于分类和回归:KNN 算法既可以用于分类问题,也可以用于回归问题。

3.5.2 缺点

  • 计算复杂度高:对于大数据集,计算待预测点与所有训练数据点的距离需要大量的计算资源。
  • 内存开销大:需要存储所有的训练数据,在内存有限的情况下处理大规模数据可能存在困难。
  • 对不相关特征敏感:KNN 算法对数据中的不相关特征和噪声比较敏感,需要进行特征选择和数据预处理。
  • 参数选择困难:选择合适的 K 值是一个挑战,K 值过小容易导致过拟合,K 值过大容易导致欠拟合。

3.6 K 近邻算法的应用场景

KNN 算法广泛应用于以下场景:

  • 分类问题:例如,文本分类、图像分类、用户行为分类等。
  • 回归问题:例如,预测房价、预测股票价格等。
  • 异常检测:例如,检测信用卡欺诈、网络入侵检测等。
  • 推荐系统:例如,电影推荐、商品推荐等。

3.7 K 近邻算法的改进方法

  • 归一化或标准化数据:由于 KNN 算法对特征的尺度非常敏感,通常需要对数据进行归一化或标准化处理。
  • 使用加权 KNN:在基本的 KNN 中,所有邻居的权重相同,可以改进为对距离更近的邻居赋予更大的权重,以提高算法的准确性。
  • 使用降维方法:可以使用 PCA(主成分分析)或其他降维方法减少特征维数,以减少计算量和内存使用。

相关文章:

  • 北京网站建设多少钱?
  • 辽宁网页制作哪家好_网站建设
  • 高端品牌网站建设_汉中网站制作
  • 排队免单模式小程序开发
  • ElementUI 布局——行与列的灵活运用
  • 初学Linux(学习笔记)
  • 【区块链通用服务平台及组件】基于向量数据库与 LLM 的智能合约 Copilot
  • 【STM32】外部中断
  • C++ | Leetcode C++题解之第406题根据身高重建队列
  • 栈与队列(c语言实现)
  • linux命令学习-sed命令
  • Unity教程(十五)敌人战斗状态的实现
  • C#使用TCP-S7协议读写西门子PLC(五)-测试程序
  • 【C语言学习路线】
  • 【JavaScript】LeetCode:36-40
  • 系统架构设计师 需求分析篇一
  • vue中动态引入加载图片不显示
  • AI大模型与产品经理:替代与合作的深度剖析
  • [case10]使用RSQL实现端到端的动态查询
  • [原]深入对比数据科学工具箱:Python和R 非结构化数据的结构化
  • iOS小技巧之UIImagePickerController实现头像选择
  • Java编程基础24——递归练习
  • java取消线程实例
  • magento2项目上线注意事项
  • MySQL几个简单SQL的优化
  • node 版本过低
  • node-sass 安装卡在 node scripts/install.js 解决办法
  • Spark学习笔记之相关记录
  • Xmanager 远程桌面 CentOS 7
  • 浅谈Kotlin实战篇之自定义View图片圆角简单应用(一)
  • 使用common-codec进行md5加密
  • 通过几道题目学习二叉搜索树
  • 推荐一款sublime text 3 支持JSX和es201x 代码格式化的插件
  • 为物联网而生:高性能时间序列数据库HiTSDB商业化首发!
  • ​软考-高级-系统架构设计师教程(清华第2版)【第12章 信息系统架构设计理论与实践(P420~465)-思维导图】​
  • (C语言)fread与fwrite详解
  • (Java)【深基9.例1】选举学生会
  • (k8s中)docker netty OOM问题记录
  • (LeetCode) T14. Longest Common Prefix
  • (动手学习深度学习)第13章 计算机视觉---图像增广与微调
  • (二) 初入MySQL 【数据库管理】
  • (附源码)计算机毕业设计ssm电影分享网站
  • (五)c52学习之旅-静态数码管
  • (详细版)Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models
  • (原创)攻击方式学习之(4) - 拒绝服务(DOS/DDOS/DRDOS)
  • (原創) 如何將struct塞進vector? (C/C++) (STL)
  • (最新)华为 2024 届秋招-硬件技术工程师-单板硬件开发—机试题—(共12套)(每套四十题)
  • **PHP分步表单提交思路(分页表单提交)
  • *ST京蓝入股力合节能 着力绿色智慧城市服务
  • .NET Core 将实体类转换为 SQL(ORM 映射)
  • .NET MVC 验证码
  • @Conditional注解详解
  • [ A*实现 ] C++,矩阵地图
  • [20150904]exp slow.txt
  • [20181219]script使用小技巧.txt
  • [Android]使用Android打包Unity工程
  • [BUUCTF]-PWN:[极客大挑战 2019]Not Bad解析
  • [C#基础知识]专题十三:全面解析对象集合初始化器、匿名类型和隐式类型